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Abstract 
 
Sacramento, Eveline Russo; Casanova, Marco Antonio (Advisor). An 
Approach for Dealing with Inconsistencies in Data Mashups. Rio de 
Janeiro, 2015. 100p. D.Sc. Thesis - Departamento de Informática, Pontifícia 
Universidade Católica do Rio de Janeiro. 
 
 
With the amount of data available on the Web, consumers can “mashup” 

and quickly integrate data from different sources belonging to the same 

application domain. However, data mashups constructed from independent and 

heterogeneous data sources may contain inconsistencies and, therefore, puzzle the 

user when observing the data. This thesis addresses the problem of creating a 

consistent data mashup from mutually inconsistent data sources. Specifically, it 

deals with the problem of testing, when data to be combined is inconsistent with 

respect to a predefined set of constraints. The main contributions of this thesis are: 

(1) the formalization of the notion of consistent data mashups by treating the data 

returned from the data sources as a default theory and considering a consistent 

data mashup as an extension of this theory; (2) a model checker for a family of 

Description Logics, which analyzes and separates consistent from inconsistent 

data and also tests the consistency and completeness of the obtained data 

mashups; (3) a heuristic procedure for computing such consistent data mashups.  

 

 
Keywords 

Data Mashup; Constraint Verification; Default Logic; Inconsistency; Model 
Checking. 
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Resumo 
 
Sacramento, Eveline Russo; Casanova, Marco Antonio (Orientador). Uma 
Abordagem para Lidar com Inconsistências em Combinações de Dados. 
Rio de Janeiro, 2015. 100p. Tese de Doutorado - Departamento de 
Informática, Pontifícia Universidade Católica do Rio de Janeiro. 
 
 
A grande quantidade de dados disponíveis na Web permite aos usuários 

combinarem e rapidamente integrarem dados provenientes de fontes diferentes, 

pertencentes ao mesmo domínio de aplicação. Entretanto, combinações de dados 

construídas a partir de fontes de dados independentes e heterogêneas podem gerar 

inconsistências e, portanto, confundir o usuário que faz uso de tais dados. Esta 

tese aborda o problema de criação de uma combinação consistente de dados a 

partir de fontes de dados mutuamente inconsistentes. Especificamente, aborda o 

problema de testar quando os dados a serem combinados são inconsistentes em 

relação a um conjunto pré-definido de restrições. As principais contribuições desta 

tese são: (1) a formalização da noção de combinação consistente de dados, 

tratando os dados retornados pelas fontes como uma Teoria de Defaults e 

considerando uma combinação consistente de dados como uma extensão desta 

teoria; (2) um verificador de modelos para uma família de Lógicas de Descrição, 

usado para analisar e separar os dados consistentes e inconsistentes, além de testar 

a consistência e completude das combinações de dados obtidas; (3) um 

procedimento heurístico para computar tais combinações consistentes de dados.  

 

 
Palavras-chave 

Combinação de dados; Verificação de restrições; Lógica de Defaults; 
Inconsistência; Verificação de modelos. 
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1 Introduction 14 

1  
Introduction 

1.1  
Motivation and Main Objectives 

Applications that access data from several sources on the Web may face 

challenges with respect to dynamically accessing and combining data from such 

sources in a meaningful way (Hogan, 2011). Indeed, the broad use of the Web 

facilitates extracting and combining data from different sources, called data 

mashups, but it also increases the risks of creating and propagating “dirty” data, 

that is, data which is inconsistent, inaccurate, incomplete or stale (Fan et al., 

2008). However, data mashups constructed from independent and heterogeneous 

data sources may contain inconsistencies and, therefore, puzzle the user when 

observing the data. 

In this thesis, we investigate the problem of constructing consistent data 

mashups from data sources that are mutually inconsistent. We deal with a very 

specific problem of inconsistency: when data to be combined is inconsistent with 

respect to a predefined set of constraints. In fact, even if each data source returns 

data consistent with its own set of constraints, the combined data might be 

inconsistent.  

Therefore, we address two questions. The first question is how to analyze 

data coming from different sources in order to identify and separate conflicting 

data. The second question is how to create a data mashup in such a way that the 

resulting data is consistent with a given set of constraints.  

 

1.2  
Contributions 

This thesis contributes to the consistent consumption of integrated data generated 

from heterogeneous and independent data sources through data mashup 

applications. By separating consistent from inconsistent data, one can properly 

integrate data without generating conflicts. 
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The first contribution of this thesis is the formalization of the notion of 

consistent data mashups by treating the data returned from the data sources as a 

default theory and considering a consistent data mashup as an extension of this 

theory.  

The second contribution is the definition of a model checker for a family of 

Description Logics, which analyzes and separates consistent from inconsistent 

data and tests the consistency and completeness of our approach.  

The third contribution is a heuristic procedure to compute consistent data 

mashups, when the data sources return a positive set of assertions. 

The formalization used in this thesis is based on a well-known family of 

Description Logics (Artale et al., 2009) and some concepts of Default Logic 

(Antoniou, 1999; Levesque et al., 2004). The heuristic procedure to compute 

consistent data mashups explores constraint graphs (Casanova et al., 2010) of the 

data mashup specification. 

More specifically, we employ DL-Lite Core with arbitrary number 

restrictions, as the adopted dialect of Description Logics, as it is sufficient for our 

needs of expressivity. Furthermore, we restrict our attention to simple defaults, as 

they are sufficient for the purposes of formalizing our data mashups.  

 

1.3  
Thesis Organization 

The remainder of this thesis is organized as follows.  

Chapter 2 first presents a brief and an informal introduction to data 

integration, query answering and mashup applications, which are database 

problems directly related to the thesis. Then, it presents formal concepts used 

throughout the thesis: model checking, OWL2 and two dialects of Description 

Logics: DL-Lite!"#$
!

 and SROIQ. 

Chapter 3 presents a case study in the area of Linked Data, which is our 

motivating example. 

Chapter 4 formalizes the problem of building consistent data mashups in the 

context of Description Logics and also in the context of the theory of defaults. 

Firstly, it shows that the mapping of this problem between the two theories is 

correct and complete, as both approaches generate the same results. Finally, it 
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formalizes the case study of Chapter 3 as a Default Theory. 

Chapter 5 first describes two existing methods that can be used for building 

consistent data mashups: a method based on brute force and an operational model, 

called process trees. Then, it presents a new method, called mashup default trees, 

which computes extensions of mashup default theories. This chapter also 

discusses the problem of testing the consistency of a set of assertions in the 

presence of a set of constraints for some variations of Description Logics, and 

presents an optimized procedure for DL-Lite Core with arbitrary number 

restrictions. Finally, it shows how to use a mashup default tree to construct a 

heuristic procedure for computing consistent data mashups.   

Chapter 6 summarizes related work and Chapter 7 presents the main 

contributions of this thesis and suggests future research. 
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2  
Background  

In this chapter, we review concepts used in the remainder of this text. In the first 

part (Sections 2.1 to 2.3), we present a brief and informal introduction about data 

integration, query answering and mashup applications. In the second part 

(Sections 2.4 to 2.7), we briefly cover concepts about model checking, OWL2 and 

two dialects of Description Logics: DL-Lite Core with arbitrary number 

restrictions and SROIQ.  

 

2.1 Data Integration 

There are an increasing number of available data sources, which are stored in 

different formats and range from highly structured, such as relational databases, to 

semi-structured, such as data on the Web. Many current applications need to 

access and combine information coming from such distinct data sources. 

Data integration refers to the problem of combing data residing at 

autonomous and heterogeneous data sources and providing the user with a unified 

view of these data (Lenzerini, 2002). According to Lenzerini (2002), the main 

components of a data integration system are: (i) the mediated view or global 

schema, which provides both a conceptual representation of the application 

domain, and a reconciled, integrated, and virtual view of the underlying sources; 

(ii) the source schema, the schema of the sources where real data are stored; and 

(iii) the mapping that specifies the correspondences between the global schema 

and the source schemas. 

It is clear that combining data from such sources creates several challenges 

that have to be faced. For example, an important issue in data integration is the 

possibility of dealing with inconsistencies among different data sources. Data 

sources may conflict with each other at three different levels (Wang et. al., 2011): 

i. Schema level: sources are expressed using different data models or have 

different schemas within the same data model; 
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ii. Data representation level: data in the sources is represented in different 

natural languages or different measurement systems; and 

iii. Data value level: there are discrepancies among the sources in data values 

that describe the same objects. 

When two or more data sources conflict with each other at data value level, 

we have a problem called data inconsistency. This is the case, for example, when 

two objects, obtained from different data sources, are identified as versions of 

each other and some of the values of their corresponding properties differ (Wang 

et al., 2011). In this case, the solution is to choose, for each property of the object, 

a unique value from such different sets of values. 

The treatment of inconsistencies arising from the integration of several data 

sources is a topic that has received increased attention lately and has become an 

important field of research in databases (De Amo et al., 2002; Lembo, 2004; 

Arenas et al., 1999; Wang et al., 2011). More recently, this problem is being 

considered in the Web context. 

 

2.2 Query Answering  

The ultimate goal of query answering is to provide trusted answers to a query, i.e., 

to compute the intersection of the answer sets obtained by evaluating the query 

over any database that satisfies the global schema (Lembo, 2004). 

Query answering in the presence of inconsistent data requires deriving 

consistent information, despite the presence of data inconsistencies. This is the 

case when the data, stored at the sources, are not entirely incorrect. For example, 

an independent and autonomous data source may provide data that do not respect 

all established constraints. Since most of the data could satisfy such constraints, it 

seems unreasonable to consider the entire source as inconsistent.  

Classical approaches for query answering do not handle such situations, i.e., 

they do not provide meaningful answers to the users in those cases. Roughly, two 

basic approaches are used for solving the inconsistency problem in knowledge 

bases (De Amo et al., 2002): 

i. Consistent-based approaches: try to make an inconsistent theory 

consistent, either by revising it, or representing through a consistent 

semantics. So, its main goal is to avoid data contradictions. 

DBD
PUC-Rio - Certificação Digital Nº 1112681/CA



 19 

ii. Paraconsistent-based approaches: the inconsistency is not rejected and 

inference methods can draw plausible conclusions from it. In this scenario, 

the inconsistencies are not removed, but the query answers can be marked 

as “consistent” or “inconsistent”. Hence, such approach prevents 

information loss due to data cleaning, which may occur in the first 

approach (Arenas et al., 1999). 

In addition to these two basic approaches, there are also hybrid approaches, 

which are based on formalisms that do not reject any information but, instead, 

associate degrees of belief, reliability or uncertainty to the data sources. 

 

2.2.1 Consistent Query Answering 

Consistent query answering means obtaining consistent information from possible 

inconsistent databases, in response to a user query. A consistent answer may be 

obtained by correcting data coming from distinct data sources, that is, by 

removing constraints violation with minimal change. In such approach, it is 

possible to deal with the problem of data inconsistency in three distinct ways: 

i. Conflict resolution: not allowing inconsistencies and simply eliminating 

the duplicate data; 

ii. Belief revision: trying to identify the data source with better belief and 

considering its information as the correct one (Wang et al., 2011); or 

iii. Voting: voting to choose the most reliable data source and considering as 

correct the information it provides. 

 The process of conflict resolution can be complex, costly and 

nondeterministic. It happens because, sometimes, an application may not have 

enough time to resolve, in real time, all conflicts relevant to a query. Furthermore, 

removing data to restore consistency may lead to information loss, which is 

undesirable (Bertossi and Chomicki, 2003). For example, one may want to keep 

multiple addresses for a person, if it is not clear which is the correct one. The 

semantic problem that arises in this context is similar to the notion of database 

repair introduced by many works in the area of inconsistent databases (Arenas et 

al., 1999; Bertossi and Chomicki, 2003). A repair is another database that is 

consistent and minimally differs from the original database (Bertossi and 

Chomicki, 2003). However, a repair can be very expensive in terms of computing 
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power and complexity. Another problem is that we can potentially lose relevant 

data due to the repair process. 

Belief revision is the process of changing beliefs to take into account a new 

piece of information. Its main goal is to identify the source with a better belief, for 

example, by looking at the qualifications of each data provider. An inconsistency 

may occur, for example, when older – and perhaps obsolete – data is compared 

with new, and perhaps up-to-date, data. Inconsistencies may also occur when data 

comes from a dubious provider, in which case both the old and the new data refer 

to the same situation, and the process consists in incorporating the new data into 

the set of old beliefs, while maintaining consistency with minimal change, i.e., the 

knowledge before and after the change should be as similar as possible. What 

makes belief revision a non-trivial operation is that it exists several different ways 

to revise data (or belief). 

Finally, the process of voting consists in simply electing a data source based 

on a majority criterion. The elected data source is considered the most trustable by 

a group of users and, in the case of data inconsistency, it will be chosen to provide 

the correct data. 

 

2.2.2 Paraconsistent Query Answering 

Sometimes inconsistent information can be useful, unavoidable and even 

desirable. In these cases, it is important to find out which query answers, returned 

from the sources, are consistent with the constraints and which are not, given a set 

of predefined constraints. This problem is called Paraconsistent Query Answering 

(Villadsen, 2002) and it is inspired in Paraconsistent Logic, which is the subfield 

of Logic that is concerned with studying and developing “inconsistency-tolerant” 

systems of logic. 

While in classical logic everything follows from an inconsistency, the 

meanings of some, or even all, of the logical operators in paraconsistent logics 

differ from classical logic, in order to block the explosion of consequences from 

inconsistencies (Villadsen, 2002). The intended semantics of classical logic is 

bivalent, i.e., it states that every declarative sentence expressing a proposition has 

exactly one truth-value, either true or false. So, a classical logic is called two-

valued logic or bivalent logic.  
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In general, paraconsistent logics are many-valued and, as such, they differ 

from classical logic by the fundamental fact that they do not restrict the number of 

truth-values to only two. For example, in some situations, it can be quite 

important to retain all available information, as discarding inconsistent data could 

imply in losing information (De Amo et al., 2002). In this case, a paraconsistent 

approach would be recommended, as it consists in reasoning in the presence of 

inconsistencies, i.e., dealing with inconsistent data without fixing or discarding it. 

 

2.3  
Mashup Applications 

In the Web 1.0, it was common to see portals regularly maintained by companies 

responsible to store and update their own data in order to share information with 

their users. However, such users could only get information through the provided 

products and services.  

With the advent of Web 2.0, Web applications began publishing APIs 

(Application Programming Interfaces), which enabled software developers to 

easily integrate data and functions, instead of building them by themselves. 

However, the use of APIs brought a series of problems (Chen et al., 2009) that 

users had to face, such as the difficulties to find and combine the right data 

because of the lack of knowledge about APIs and relationships among them; and 

the need to find and read the specification of a new API before using it, so as to 

decipher its appropriate functions.  

Mashup applications have an active role in the evolution of Web 2.0, as they 

allow users to access existing APIs to create new services for combining, 

visualizing, and aggregating data. The term mashup was borrowed from the area 

of pop music, where a mashup means a new song mixed from the vocal and 

instrumental tracks from two different source songs, which usually belong to 

different genres (Merril, 2006).  

A mashup, in the area of Web development, is described as “a Web page or 

Web application that uses and combines data, presentation or functionality from 

two or more sources to create new services”. So, a mashup implies easy and fast 

integration, using open APIs or data sources, to produce enriched results that were 
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not necessarily the original reason for producing the application or the raw source 

data. 

Note that a manual mashup development still needs a user with 

programming skills and intimate knowledge about the schemes and semantics of 

the data sources, or the business protocol conventions for message exchanges. 

Thus, this task still requires advanced users (software developers). Nevertheless, a 

tool-assisted mashup development can simplify the integration of contents, 

application logic or user interfaces, as it is largely assisted by “intelligent” source 

components (Yu et al., 2008).   

Mashup development tools are usually simple enough to be used by 

inexperienced end-users, as they generally do not require programming skills and 

can also speed up the overall mashup development process. Therefore, these tools 

contributed to a new vision of the Web, where even end-users were able to 

contribute. Examples of current mashup tools are: Yahoo Pipes and MapBuild. 

Some mashup tools like Google Mashup Editor (GME), Microsoft Popfly, and 

Intel Mash Maker were discontinued by their providers and are no longer 

available. 

Mashups can be compared to others traditional integration approaches, such 

as application integration (Web Services) and data integration (Lenzerini, 2002). 

The main difference is that mashups are usually appropriated to very specific and 

short-living situations, and they are developed with the most modern Web 

technologies, such as AJAX/RESTful services and RSS/Atom feeds. Furthermore, 

mashups are usually appropriated for personal use, i.e., they are built for a small 

group of users (a small audience), and do not raise concerns about scalability, 

security or reliability. By contrast, traditional integration tools usually demand 

systematic and repeatable enterprise processes, which constitute business-critical 

applications with many users and a set of complex requirements that need to be 

followed (Yu et al., 2008). 

There are three main types of mashups: 

• Business or enterprise mashups, which define applications that combine 

heterogeneous data and applications from multiple sources for business 

purposes. They focus data into a single presentation and allow 

collaborative work among businesses and developers. These terms are 

often used to differentiate a business-related mashup from a data mashup, 
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which is usually used by the general public.  Other differences are that the 

enterprise mashups include integration with the business computing 

environment, data governance, business intelligence (BI) / business 

analytics (BA) tools, use more sophisticated programming tools and also 

need more strict security policies.  

• Data mashups, which integrate similar types of media and information 

from multiple heterogeneous sources into a single representation. The 

combination of such resources creates a new and distinct application that 

was not originally provided by either source, and which is suitable for 

general users. 

• Consumer mashups, which combine data from multiple public sources in 

the browser and organize them through a simple browser user interface. 

Examples of consumer mashups are WikipediaVision, which shows in 

semi-real time where anonymous edits to Wikipedia are originating from 

(combining Google Maps for 2D visualization and Wikipedia API for 

seeing recent changes to Wikipedia); and Google Shopping, which allows 

users to search for products on online shopping websites and compare 

prices between different vendors. 

 Data mashups can be classified according to the type of data to be 
integrated: 

• Geographic or Cartographic data, which provide geospatial data and 

applications for geovisualization, geolocation, etc. Such mashups may use 

APIs from Google (Google Maps), Microsoft (Virtual Earth), Yahoo 

(Yahoo Maps) and AOL (MapQuest). 

• Indexed data, which provides documents, photos, videos, weblogs, etc. 

used by metasearch engines. These mashups may, for example, use APIs 

from Flickr and other social networks to provide images with associated 

metadata information (such as place, date, time, people in the photo, etc.). 

• Feeds, headlines, blogs and podcasts, which provide Web content used by 

news aggregators. Such mashups may, for example, access data related to 

a topic from BBC, New York Times and Reuters (in RSS or Atom format) 

and create a personalized newspaper that meets a reader’s particular 

interest. 

 Like any other data integration domain, mashup development raises 
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technical challenges that need to be addressed. Some of these challenges were 

already solved, while others are still open questions (Merril, 2006): 

• Semantic Meaning: how to derive shared semantics from heterogeneous 

sources, before integrating legacy data sources. 

• Data Quality: the need for data analysis and data cleaning before using 

tools for automated reasoning, as data can be subjected to inconsistency, 

incorrectness or intentionally misleading data entry. 

• Protection of data intellectual property: the tradeoff between consumer 

privacy versus fair-use and free flow of information. Content providers 

might determine if their content is being used in an approved manner or 

not. 

 

2.4  
Model Checking 

Model checking refers to the following problem: “Given a set of assertions A, 

exhaustively and automatically check whether A is a model of a set of axioms that 

express a given specification”. It provides an automated and formal technique to 

check the absence of errors, that is, to verify correctness properties. Model 

checking may also be considered an intelligent and effective debugging technique.  

A model checker, the software tool that performs the model checking, 

examines all possible system scenarios in a systematic manner. It shows that a 

given system model satisfies or not a certain property (Baier and Katoen, 2008), 

i.e., it checks for property violation. It is algorithmic and often efficient, as the 

system has a finite number of states, despite the fact that reasoning can have an 

infinite behavior. In order to algorithmically solve a problem, both the model of 

the system and its specification need to be formulated in some precise 

mathematical language.  

Several model-checking tools use LTL (Linear Temporal Logic), a temporal 

logic that is based on a linear-time perspective (or a slight variant of it), as the 

property specification language. LTL is called linear because the qualitative 

notion of time is path-based: at each moment of time there is only one possible 

successor state, and thus each time moment has a unique possible future. This 
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follows from the fact that the interpretation of LTL formulae is defined in terms of 

sequences of states.  

Other model-checking tools use CTL (Computation Tree Logic), a logic that 

is based on a branching-time view, as at each moment of time there are many 

possible successor states, and thus each time moment may split into several 

possible futures. In this case, paths are obtained from a transition system that 

might be branching: a state may have several distinct direct successor states, and 

thus several computations may start in a state. So, CTL is a logic for formalizing 

state-based properties. The semantics of this kind of logic is not based on a linear 

notion of time – an infinite sequence of states - but on a branching notion of time - 

an infinite tree of states (Baier and Katoen, 2008). The difficulty is that the state 

graph can be immense. Abstraction can be helpful as it replaces the original state 

graph by a much smaller one, verifying the same formulae (Emerson, 2008).  

Currently, there are many model checkers tools, such as SPIN (Holzmann, 

2003), which is very popular and one of the most powerful tools for detecting 

software defects in concurrent system design. A historical background of the area 

of model checking is presented in Emerson (Emerson, 2008). 

 

2.5  
The OWL 2 Web Ontology Language 

2.5.1 Overview 

The OWL 2 Web Ontology Language (OWL 2, 2012a), informally known as 

OWL 2, is an extension and revision of the OWL Web Ontology Language 

developed by the W3C Web Ontology Working Group and published in 2004 

(hereafter referred to as “OWL 1”). Like OWL 1, OWL 2 is designed to facilitate 

ontology development and sharing via Web, its ultimate goal is to make Web 

content more accessible to machines. 

OWL 2 became a W3C Recommendation on Oct 27 2009. It is an ontology 

language for the Semantic Web with formally defined meaning. OWL 2 

ontologies provide classes, properties, individuals, and data values and are stored 

as Semantic Web documents.  
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OWL 2 adds new functionality with respect to OWL 1. Some of the new 

features are syntactic sugar (e.g., disjoint union of classes), while others offer new 

expressivity, such as keys, property chains, richer datatypes, etc. 

OWL 2 ontologies can be used along with information written in RDF; 

OWL 2 ontologies themselves are primarily exchanged as RDF documents. Any 

OWL 2 ontology can also be viewed as an RDF graph.  

The specification of OWL 2 introduced several profiles or fragments for the 

language, by placing syntactic restrictions on the structure of OWL 2 ontologies 

(OWL 2, 2012b). These profiles are sub-languages of OWL 2 that offer important 

advantages in particular application scenarios. Each profile is a subset of the 

structural elements (syntactic subsets) that can be used in a conforming ontology, 

and it is also more restrictive than OWL DL. Finally, each profile trades off 

different aspects of OWL’s expressive power, in return for different 

computational and/or benefits of implementation. In the next sections, we 

summarize two useful profiles that will be mentioned in this thesis.  

 

2.5.2 The OWL 2 EL Profile 

The OWL 2 EL profile is particularly useful in applications employing ontologies 

that contain very large numbers of properties or classes, and it captures the 

expressive power used by many such ontologies. The EL acronym reflects the 

profile’s basis in the EL family of description logics (Baader et al., 2008) that 

provide only existential quantification. 

OWL 2 EL places restrictions on the type of class restrictions that can be 

used in axioms. In particular, the following types of class restrictions are 

supported: 

• Existential quantification to a class expression (ObjectSomeValuesFrom) 

or a data. 

• Range (DataSomeValuesFrom). 

• Existential quantification to an individual (ObjectHasValue) or a literal 

one (DataHasValue). 

• Self-restriction (ObjectHasSelf). 

• Enumerations involving a single individual (ObjectOneOf) or a single 

literal (DataOneOf). 
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• Intersection of classes (ObjectIntersectionOf) and data ranges 

(DataIntersectionOf). 

OWL 2 EL supports the following axioms, all of which are restricted to the 

allowed set of class expressions: 

• Class inclusion (SubClassOf). 

• Class equivalence (EquivalentClasses). 

• Class disjointness (DisjointClasses). 

• Object property inclusion (SubObjectPropertyOf) with or without property 

chains, and data property inclusion (SubDataPropertyOf). 

• Property equivalence (EquivalentObjectProperties and 

EquivalentDataProperties). 

• Transitive object properties (TransitiveObjectProperty). 

• Reflexive object properties (ReflexiveObjectProperty). 

• Domain restrictions (ObjectPropertyDomain and DataPropertyDomain). 

• Range restrictions (ObjectPropertyRange and DataPropertyRange). 

• Assertions (SameIndividual, DifferentIndividuals, ClassAssertion, 

ObjectPropertyAssertion, DataPropertyAssertion, 

NegativeObjectPropertyAssertion and NegativeDataPropertyAssertion). 

• Functional data properties (FunctionalDataProperty). 

• Keys (HasKey). 

OWL 2 EL enables polynomial time algorithms for all the standard 

reasoning tasks; it is particularly suitable for applications in which very large 

ontologies are needed, and which expressivity power can be traded for 

performance guarantees. So, the basic reasoning problems for OWL 2 EL – 

ontology consistency, class expression subsumption, and instance checking – can 

be performed in time that is polynomial with respect to the size of the ontology 

(Baader et al., 2008). Dedicated reasoning algorithms for this profile are available 

and have been demonstrated to be implementable in a highly scalable way. 

 

2.5.3 The OWL 2 QL Profile 

OWL 2 QL is based on the DL-Lite family of Description Logics (Calvanese et 

al., 2007). Several variants of DL-Lite have been described in the literature, and 

DL-LiteR provides the logical underpinning for OWL 2 QL.  
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DL-LiteR does not require the Unique Name Assumption (UNA), which is a 

simplifying assumption that says that different names (constants) always refer to 

different entities in the world, since making this assumption would have no 

impact on the semantic consequences of a DL-LiteR ontology.  

More expressive variants of DL-Lite, such as DL-LiteA, extend DL-LiteR 

with functional properties and can also be extended with keys. However, for query 

answering to remain in LOGSPACE, these extensions require UNA and need to 

impose certain global restrictions on the interaction between properties used in 

different types of axiom.  

Basing OWL 2 QL on DL-LiteR avoids practical problems involved in the 

explicit axiomatization of UNA. Other variants of DL-Lite can also be supported 

on top of OWL 2 QL, but may require additional restrictions on the structure of 

ontologies. 

OWL 2 QL supports the following axioms: 

• Subclass axioms (SubClassOf). 

• Class expression equivalence (EquivalentClasses). 

• Class expression disjointness (DisjointClasses). 

• Inverse object properties (InverseObjectProperties). 

• Property inclusion (SubObjectPropertyOf not involving property chains 

and SubDataPropertyOf). 

• Property equivalence (EquivalentObjectProperties and 

EquivalentDataProperties). 

• Property domain (ObjectPropertyDomain and DataPropertyDomain). 

• Property range (ObjectPropertyRange and DataPropertyRange). 

• Disjoint properties (DisjointObjectProperties and DisjointDataProperties). 

• Symmetric properties (SymmetricObjectProperty). 

• Reflexive properties (ReflexiveObjectProperty). 

• Irreflexive properties (IrreflexiveObjectProperty). 

• Asymmetric properties (AsymmetricObjectProperty). 

• Assertions other than individual equality assertions and negative property 

assertions (DifferentIndividuals, ClassAssertion, ObjectPropertyAssertion, 

and DataPropertyAssertion). 
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The OWL 2 QL profile is designed so that sound and complete query 

answering is in LOGSPACE (more precisely, in AC0) with respect to the size of 

the data (assertions), using standard relational database technology. It is 

particularly suitable for applications in which relatively lightweight ontologies are 

used to organize large numbers of individuals and which is useful or necessary to 

access the data directly via relational queries (e.g., SQL). 

 

2.6  
DL-Lite Core with Arbitrary Number Restrictions 

In this thesis, we adopt DL-Lite core with arbitrary number restrictions (Artale et 

al., 2009), denoted DL-Lite!"#$
!

, a DL dialect that is useful for conceptual 

modeling. We refer to such ontologies as lightweight ontologies in the remainder 

of this text. 

A language L in this dialect is characterized by a vocabulary V, consisting 

of a set of object names, a set of atomic concepts, a set of atomic roles, and the 

bottom concept ⊥.  

The sets of basic concept descriptions, concept descriptions, and role 

descriptions of L are defined as follows: 

• If P is an atomic role, then P and P¯ (inverse role) are role descriptions. 

• If u is an atomic concept or the bottom concept, and p is a role description, 

then u and (≥n p) (at-least restriction, where n is a positive integer) are 

basic concept descriptions and also concept descriptions.  

• If u is a basic concept description, then ¬u (negated concept) is a concept 

description. 

Furthermore, we abbreviate “¬(≥ n+1 p)” as “(≤ n p)” (at-most restriction).  

An inclusion of L (or over V) is an expression of one of the forms  

u ⊑ v or u ⊑ ¬v, where u and v are basic concept descriptions.  

An assertion of L (or in V) is an expression of one of the forms C(a), ¬C(a), 

P(a,b), ¬P(a,b), (a ≈ b), and ¬(a ≈ b), where C is an atomic concept, P is an 

atomic role, and a and b are object names.  
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We also say that (a ≈ b) and ¬(a ≈ b) are an equality and an inequality, 

respectively. Note that we allow equality and inequality assertions to occur in 

order to capture owl:sameAs and owl:differentFrom OWL properties.  

A formula of L (or over V) is an inclusion or an assertion of L. 

An interpretation s for L consists of a nonempty set Δs, the domain of s, and 

an interpretation function, also denoted s, with the usual definition (Artale et al., 

2009). We use s(u) to indicate the value that s assigns to an expression u of L. We 

say that s satisfies a formula σ of L or that s is a model of σ, denoted s ⊨ σ, iff 

s(u) ⊆ s(v)   if σ is of the form u ⊑ v  

s(u) ⊆ s(¬v)  if σ is of the form u ⊑ ¬v 

s(a) ∈ s(C)   if σ is of the form C(a)  

(s(a),s(b)) ∈ s(P) if σ is of the form P(a,b) 

s(a) = s(b)  if σ is of the form (a ≈ b)  

s ⊭ θ   if σ is of the form ¬θ 

Let Σ be a set of formulas of L. We say that s satisfiesΣ or that s is a model 

of Σ, denoted s ⊨ Σ, iff s satisfies all formulas in Σ. We also say that Σ logically 

implies σ, denoted Σ ⊨ σ, iff any model of Σ satisfies σ. Finally, we say that Σ is 

satisfiable or consistent iff there is a model of Σ.  

Table 1 lists the types of DL-­‐Lite!"#$!  inclusions that represent constraints 

commonly used in conceptual modeling. 

 

Table 1. Common constraint types used in conceptual modeling. 

Constraint type Abbreviated 
form 

Unabbreviated 
form 

Informal semantics 

Domain 
Constraint 

∃P ⊑ C (≥ 1 P) ⊑ C Property P has class C as domain, that is,  
if (a,b) is a pair in P, then a is an individual 
in C. 

Range 
Constraint 

∃P¯  ⊑ C (≥ 1 P¯) ⊑ D Property P has class D as range, that is,  
if (a,b) is a pair in P, then b is an individual 
in D. 

minCardinality 
Constraint 

 C ⊑ (≥ n P)  
or  

C ⊑ (≥ n P¯) 

Property P or its inverse P¯ maps each 
individual in class C to at least n distinct 
individuals. 

maxCardinality 
Constraint 

C ⊑ (≤ n P) 
or  

C ⊑ (≤ n P¯) 

C ⊑  ¬(≥ n+1 P)  
or  

C ⊑ ¬(≥ n+1 P¯) 

Property P or its inverse P¯ maps each 
individual in class C to at most n distinct 
individuals. 
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Subset 
Constraint 

 C ⊑ D Each individual in C is also in D, that is,  
class C denotes a subset of class D. 

Disjointness  
Constraint 

 C ⊑ ¬D No individual is in both C and D, that is, 
classes C and D are disjoint. 

 

 

In this thesis, we adopt the notion of constraint graph to capture the 

structure of sets of constraints. Given a set of constraints Σ and a set of concept 

descriptions Ω, the constraint graph that represents Σ and Ω, denoted G(Σ,Ω), can 

be constructed as detailed in Casanova et al. (2010). When Ω is the empty set, we 

simply write G(Σ) and say that the graph represents Σ. Section 3.3 contains an 

example of a constraint graph. 

A constraint graph is also fundamental to construct the set of constraints of a 

data mashup specification. In our approach, the data mashup constraints are not 

merely the constraints of the domain ontology, but must be those that are logical 

consequences of the domain ontology constraints and that involve only the 

selected symbols of the vocabulary of the data mashup. An example of a 

constraint graph is shown in the next chapter. 

 

2.7  
The Description Logic SROIQ and the OWL 2 Direct Semantics 

The semantics of the Description Logic SROIQ (Horrocks and Sattler, 2006) 

provide the basis for the direct model-theoretical semantics of OWL 2 (OWL 2, 

2012c). 

Very briefly, SROIQ is an extension of the Description Logic underlying 

OWL-DL, SHOIN, with a number of expressive means useful in practice. 

SROIQ includes complex role inclusion axioms of the form R ° S ⊑ R or S ° R ⊑ R 

to express propagation of one property along another one, which have proven 

useful in medical terminologies.  

Furthermore, SROIQ extends SHOIN with reflexive, antisymmetric and 

irreflexive roles, disjoint roles, a universal role, while constructing ∃R.Self which 

allows, for instance, the definition of concepts such as a “narcist”. Finally, 

SROIQ considers negated role assertions and qualified number restrictions.  
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SROIQ has a tableau-based reasoning algorithm that combines the use of 

automata to keep track of universal value restrictions with the techniques 

specifically developed for SROIQ (Horrocks and Sattler, 2006). 

 

2.8  
Summary 

This chapter covered two distinct sets of topics. Sections 2.1 to 2.3 presented a 

brief and informal introduction to data integration, query answering, and mashup 

applications, which are database problems directly related to this thesis. Sections 

2.4 to 2.7 surveyed formal concepts used throughout the thesis: model checking, 

OWL2 and two dialects of Description Logics: DL-Lite Core with arbitrary 

number restrictions and SROIQ. DL Lite Core with arbitrary number restrictions 

was covered in more detail, since it provides the basis for some of the 

contributions described in Chapter 5. 
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3  
A Case Study of Data Mashup 

In this chapter, we discuss the problem of building consistent data mashups. The 

explanation is based on a schematic example, in the context of Linked Data, 

which presents each step of this problem in an intuitive way. 

 

3.1  
Brief Introduction to Linked Data   

In recent years, the Web has evolved from a global information space of linked 

documents to one where both documents and data are linked. This evolution, 

called Linked Data, is reflected in a set of best practices for publishing and 

connecting structured data on the Web (Bizer et al., 2007).  

The adoption of the Linked Data best practices led to the extension of the 

Web with a global data space connecting data from several domains. These 

practices include (Bizer et al., 2009): 

(i)  Using URIs for properly identifying the resources; 

(ii)  Using technologies, such as RDF and SPARQL, respectively, for 

describing and querying these resources; 

(iii)  Reusing URIs to create links between data from different sources, in order 

to connect these sources and to discover additional things about data, as 

one navigates through these links. 

Current Linked Data technologies facilitate links to be created between 

records in distinct databases. They have been adopted by an increasing number of 

Web data providers over the last years, leading to the creation of a global data 

space containing billions of assertions, called the Web of Data.  

Unlike Web 2.0 mashups, defined over a fixed set of data sources, Linked 

Data applications may potentially discover new data sources at runtime by 

following links between different databases, and can thus deliver better answers, 

as new data sources appear on the Web. 
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3.2  
Description of the Data Sources  

In this chapter, we consider that data is provided by Linked Data sources, i.e., we 

assume that data sources are published following the Linked Data principles.  

Consider a Linked Data mashup service that covers a given domain, defined 

by a domain ontology and a set of the Linked Data sources, modeled by 

application ontologies. We consider only one domain ontology for simplicity.  

Furthermore, we assume that:  

1. The application ontology vocabularies are subsets of the domain ontology;  

2. The Linked Data mashup service has access to the vocabularies of the 

application ontologies (but not to their constraints);  

3. The Linked Data mashup service has access to the vocabulary and 

constraints of the domain ontology.  

These assumptions are consistent with the current Linked Data practices, 

which promote:  

• Reuse of known vocabularies to define a Linked Data source;  

• Adoption of a VoiD document to indicate the vocabularies – but not the 

constraints – that a Linked Data source uses;  

• Adoption of repositories that provide access to the full definition – 

vocabulary and constraints – of commonly used domain ontologies. 

We cannot assume, however, that the data retrieved from different Linked 

Data sources is consistent with the constraints of the domain ontology, for two 

reasons. First, we have no guarantee that each Linked Data source returns 

consistent data; in fact, we do not even know what constraints the Linked Data 

source respects. Second, even if each Linked Data source returned data that is 

consistent with the domain ontology constraints, the combined data might be 

inconsistent. In view of these observations, the Linked Data mashup service must 

always analyze the data coming from different Linked Data sources to identify 

and isolate inconsistent data. 
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3.3  
Description of the Data Mashup  

We assume that the user is responsible for describing the data mashup vocabulary 

VM as a subset of the domain ontology vocabulary.  

The set ΣM of mashup constraints are those that are logical consequences of 

the domain ontology constraints and that involve only the symbols in VM. The 

generation of such constraints is discussed in Sacramento et al., 2012. 

The mashup ontology is the pair OM =(VM,ΣM) and represents a conceptual 

model of what the user observes. 

In our example, assume that:  

• The mashup vocabulary VM has four classes, A, B, C and D, and a property 

p. 

• The set of mashup constraints ΣM is the one shown in the second column of 

Table 2, using the basic notation of Description Logic: 

ΣM = { (≥1 p¯) ⊑ D, C ⊑ (≥1 p), C ⊑ ¬(≥2 p), A ⊑ C, B ⊑ C, A ⊑ ¬B } 
  

Figure 1 depicts the constraint graph G(ΣM) that represents ΣM, which is 

constructed as follows.  

We say that the complement of a basic concept description e is ¬e, and vice-

versa. If c is a concept description, then denotes the complement of c. The 

nodes of G(ΣM) are labeled with expressions and their complements (for 

simplicity, we say “node u” instead of “node labeled with u”).  

For each inclusion u ⊑ v in ΣM, there are nodes in G(ΣM) labeled with u, , 

v and , and arcs from node u to node v and from node to node . For 

example, the constraint A ⊑ ¬B generates two arcs: an arc from node A to node 

¬B and an arc from node B to node ¬A.  

G(ΣM) is such that, if there is a path from node u to node v, then ΣM logically 

implies u ⊑ v. For example, in constraint σ3, since there is a path from node C to 

node ¬(≥2 p), ΣM logically implies C ⊑ ¬(≥2 p). Furthermore, since there is a 

path from node B to node C and a path from node C to node ¬(≥2 p), ΣM logically 

implies B ⊑ ¬(≥2 p). 

  

c

u

v v u
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# Constraint Informal specification 

σ1 (≥1 p¯) ⊑ D The range of p is D. 

σ2 C ⊑ (≥1 p) C is contained in the domain of p. 

σ3 C ⊑ ¬(≥2 p) p associates at most one individual to every individual in C. 

σ4 A ⊑ C A is a subset of C. 

σ5 B ⊑ C B is a subset of C. 

σ6 A ⊑ ¬B A is disjoint from B. 
 

  

(≥1 p¯) 

D 

¬(≥1 

¬D ¬A 

(≥2 p) ¬(≥2 p) 

A 

B ¬B 

(≥1 p) 

C ¬C 

¬(≥1 p) 

Figure 1. The constraint graph G(ΣM) for ΣM. 

Table 2. Set of mashup constraints ΣM. 
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Table 3. Data sources and matching rules. 

Source Vocabulary # Matching Rule 
S1 S1:B 

S1:D 
S1:p 

m1 
m2 
m3 

B(x) ← S1:B(x) 
D(x) ← S1:D(x) 
p(x,y) ← S1: p(x,y) 

S2 S2:A 
S2:D 
S2:p 

m4 
m5 
m6 

A(x) ← S2:A(x) 
D(x) ← S2:D(x) 
p(x,y) ← S2: p(x,y) 

S3 S3:C m7 
 

C(x) ← S3:C(x) 
 

 

Table 4. Assertions expressing data from sources S1, S2 and S3. 

S1 S2 S3 
# Original Trans # Original Trans # Original Trans 

S1.1 S1:B(a) B(a) S2.1 S2:A(a) A(a) S3.1 S3:C(d) C(d) 

S1.2 S1:D(b) D(b) S2.2 S2:D(c) D(c)    
S1.3 S1:p(a,b) p(a,b) S2.3 S2:p(a,c) p(a,c)    

   S2.4 S2:p(d,c) p(d,c)    

Table 5. Maximal consistent subsets of S. 

M1 B(a), C(a), ¬A(a), p(a,b), p(d,c), (≥1 p)(a), (≥1 p¯)(b), (≥1 p¯)(c), ¬(≥2 p)(a), D(b), 
D(c), C(d), (≥1 p)(d), ¬(≥2 p)(d) 

M2 B(a), C(a), ¬A(a), p(a,c), p(d,c), (≥1 p)(a), (≥1 p¯)(c), ¬(≥2 p)(a), D(b), D(c), C(d), 
(≥1 p)(d), ¬(≥2 p)(d) 

M3 A(a), C(a), ¬B(a), p(a,b), p(d,c), (≥1 p)(a), (≥1 p¯)(b), (≥1 p¯)(c), ¬(≥2 p)(a), D(b), 
D(c), C(d), (≥1 p)(d), ¬(≥2 p)(d)  

M4 A(a), C(a), ¬B(a), p(a,c), p(d,c), (≥1 p)(a), (≥1 p¯)(c),¬(≥2 p)(a), D(b), D(c), C(d), 
(≥1 p)(d), ¬(≥2 p)(d) 

M5 ¬C(a), ¬B(a), ¬A(a), p(a,b), p(a,c), p(d,c), (≥1 p¯)(b), (≥1 p¯)(c), (≥2 p)(a), D(b), 
D(c), C(d), (≥1 p)(d), ¬(≥2 p)(d) 

 
3.4  
Registering the Linked Data Sources    

The process of registering a Linked Data source with a data mashup service 

involves matching the vocabulary of the Linked Data source with the vocabulary 

of the domain ontology. The matching step is outside the scope of this thesis, but 

it is a trivial process in our approach, as the vocabularies of the Linked Data 

sources are subsets of the vocabulary of the domain ontology. 

In our example, assume that the data mashup service has access to three 

Linked Data sources, S1, S2 and S3, which vocabularies are shown in the second 
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column of Table 3. Also assume that the vocabularies of the Linked Data sources 

are matched with the vocabulary of the domain ontology, as shown in the last 

column of Table 3, through a set of matching rules.  

We express these matching rules using a Datalog-like notation. For 

simplicity, for the classes that match, we used the same name as in the domain 

ontology, prefixed with “Si:”. For example, the matching rule m1: B(x) ← S1:B(x) 

shown in line 1 of Table 3 tries to match instances x in class B from S1 with 

instances x of class B in the domain ontology. This kind of matching rule is very 

simple and can be automatically generated.  

 

3.5  
Querying the Linked Data Sources and Populating the Linked Data 
Mashup    

Then, the mashup service prepares a set of queries over the data sources to create 

the data mashup to be shown to the user. Such queries are, in fact, 

reinterpretations of the matching rules, where the body of a rule is the where 

clause of the query and the head is the target clause.  

For the sake of argument, assume that the queries return the assertions 

shown in the columns labeled “Original” in Table 4. Then, we translate the query 

results to assertions over the vocabulary of the domain ontology with the help of 

the matching rules, as shown in the columns labeled “Trans” (Translated) in 

Table 4. 

The key problem we address in this thesis is how to design a mashup service 

that creates a maximal subset M of the set of assertions collected from the data 

sources, in such a way that M is consistent with the constraints of the mashup 

ontology; if there is more than one subset, the service should offer the user the 

opportunity to browse all such subsets.  

Let us first discuss why this is a problem. First, observe that Table 4 shows 

all assertions obtained from the data sources, after applying the matching rules. 

 

Example 1: Let A be the set of all such assertions: 

A = {B(a), D(b), p(a,b), A(a), D(c), p(a,c), p(d,c), C(d)} 

Recall that the set of constraints is: 

ΣM ={ (≥1 p¯) ⊑ D, C ⊑ (≥1 p), C ⊑ ¬(≥2 p), A ⊑ C, B ⊑ C, A ⊑ ¬B } 
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Note that assertion A(a) alone (or B(a)) violates constraint A ⊑ C (or  

constraint B ⊑ C), since there is no assertion C(a). To avoid constraint violations 

such as this, we allow the creation of new derived assertions. For example, we 

generate assertion C(a) whenever assertion A(a) is present. Furthermore, an 

assertion such as p(a,b) induces assertions (≥1 p)(a) and (≥1 p¯)(b), by definition 

of at-least restriction, which we must also take into account.  

Let S be the set of assertions obtained by applying such strategy to the 

assertions in A. We construct S as follows.  

First, we initialize S0 with A: 

S0 = A = {B(a), D(b), p(a,b), A(a), D(c), p(a,c), p(d,c), C(d)} 

Then, from S0 and ΣM, we obtain new assertions: 

• C(a), from B(a) and constraint B ⊑ C  

• ¬A(a), from B(a) and constraint A ⊑ ¬B (which is equivalent to B ⊑ ¬A) 

• (≥1 p¯)(b), from p(a,b) and the definition of (≥1 p¯) 

• C(a), from A(a) and constraint A ⊑ C  

• ¬B(a), from A(a) and constraint A ⊑ ¬B 

• (≥1 p¯)(c), from p(a,c) and the definition of (≥1 p¯) 

•  (≥2 p)(a), from p(a,b), p(a,c) and the definition of (≥2 p) 

• (≥1 p¯)(c), from p(d,c) and the definition of (≥1 p¯) 

•  (≥1 p)(d), from C(d) and constraint C ⊑ (≥1 p) 

• ¬(≥2 p)(d), from C(d) and constraint C ⊑ ¬(≥2 p) 

The new set of assertions is: 

S1 = S0 ∪ {C(a), ¬A(a), (≥1 p¯)(b), ¬B(a), (≥1 p¯)(c), (≥2 p)(a),  

 (≥1 p)(d), ¬(≥2 p)(d)} 

Now, from S1 and ΣM, we obtain new assertions: 

• (≥1 p)(a), from C(a) and constraint C ⊑ (≥1 p) 

• ¬(≥2 p)(a), from C(a) and constraint C ⊑ ¬(≥2 p) 

• D(b), from (≥1 p¯)(b) and constraint (≥1 p¯) ⊑ D 

• D(c), from (≥1 p¯)(c) and constraint (≥1 p¯) ⊑ D 

• ¬C(a), from (≥2 p)(a) and constraint C ⊑ ¬(≥2 p) (which is equivalent to  

(≥2 p)  ⊑ ¬C) 
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The new set of assertions is: 

S2 = S1 ∪ {(≥1 p)(a), ¬(≥2 p)(a), ¬C(a)} 

No new assertions can be obtained from the assertions added to S1 to create 

S2. Hence, the final set of assertions S is: 

S = { B(a), D(b), p(a,b), A(a), D(c), p(a,c), p(d,c), C(d),  

C(a), ¬A(a), (≥1 p¯)(b), ¬B(a), (≥1 p¯)(c), (≥2 p)(a),  

 (≥1 p)(d), ¬(≥2 p)(d), (≥1 p)(a), ¬(≥2 p)(a), ¬C(a)} 

or, reordering assertions lexicographically: 

S = { A(a), ¬A(a),  

B(a), ¬B(a),  

C(a), ¬C(a), C(d),  

D(b), D(c),  

p(a,b), p(a,c), p(d,c),  

(≥1 p)(a), (≥1 p)(d), (≥1 p¯)(b), (≥1 p¯)(c),  

(≥2 p)(a), ¬(≥2 p)(a), ¬(≥2 p)(d) } 

Suppose that the mashup service passes S directly to the user. The service 

would then be passing inconsistent data, since the following pairs of assertions are 

inconsistent: 

(1) A(a), ¬A(a) 

(2) B(a), ¬B(a) 

(3) C(a), ¬C(a) 

(4) (≥2 p)(a), ¬(≥2 p)(a) 

In fact, there are five maximal consistent subsets of S, as shown in Table 5. 

The construction of the mashups in Table 5 requires some explanation, though. 

First, we must properly allocate each pair of assertions presented in (1), (2), 

(3) and (4) to distinct mashups, since they are inconsistent, as they represent 

contradictory information.  

Second, we must clearly allocate assertions A(a) and B(a) to distinct 

mashups, since they violate the disjointness constraint A ⊑ ¬B.  

Third, we must allocate assertion C(a) and each of the two assertions, p(a,b) 

and p(a,c), to distinct mashups, since the three assertions together violate the 

maxCardinality constraint C ⊑ ¬(≥2 p).  
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Hence, we create four consistent mashups M1, M2, M3 and M4. However, 

and less intuitively, we may create a consistent mashup M5 with two assertions, 

p(a,b) and p(a,c), if we ignore assertion C(a). 

The negated assertions may also be exhibited to the user in order to 

reinforce what constraints C ⊑ ¬(≥2 p) and A ⊑ ¬B impose. Consider  

C ⊑ ¬(≥2 p) first. In M1 and M2, the negated assertions ¬(≥2 p)(a) and  

¬(≥2 p)(d) indicate that p associates just one individual with instances a and d, 

respectively, and likewise for M3 and M4. In M5, ¬C(a) indicates that instance a 

cannot be considered as a member of C. Similar observations apply when we 

consider A ⊑ ¬B, regarding ¬A(a) and ¬B(a). 

 

3.6  
Summary    

The discussion in this chapter raises several questions: 

 

Q1. How to compute the mashup constraints from the domain ontology 

constraints? 

Q2. How to match the data source vocabularies with the vocabulary of the 

domain ontology? 

Q3. How to derive new assertions from those obtained from the data sources 

(after translation) and the mashup constraints?  

Q4. How to create a (maximal) consistent subset M of the set of the assertions 

collected from the data sources in such a way that M is consistent with the 

mashup constraints?  

 

Question Q1 was discussed in Casanova et al., 2011 and Sacramento et al., 

2012. Question Q2 was discussed in Sacramento et al., 2010. The matching step is 

in fact a trivial process, as we assumed that the vocabularies of the data sources 

are subsets of the vocabulary of the domain ontology.  

This thesis proposes a formal approach to Questions Q3 and Q4 and, in 

special, it addresses Question Q4 based on the use of Default Theories.  
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4  
Mashups as Default Theories 

In this chapter, we first present the basic concepts of the Default Logic adopted in 

this thesis. Then, we formalize the problem of building consistent data mashups. 

Next, we present our case study, reformulated using the concepts of defaults. 

Finally, we prove that the mapping of the problem of building consistent data 

mashups from the context of Description Logics to the context of Default Logic is 

correct and complete, i.e., we prove that both approaches generate the same 

maximal consistent subsets of assertions.  

 

4.1  
Default Logic  

Default Logic is a non-monotonic logic proposed to formalize reasoning with 

default assumptions (Levesque et al., 2004; Reiter, 1980). This logic allows 

expressing facts such as “by default, something is true”.  

The following definitions are formulated in the context of first-order logic, 

but they equally apply to any of the descriptions logics mentioned in Chapter 2. 

For compatibility with the description logics of Chapter 2, we define an 

assertion as a ground atomic formula. 

Let V be a first-order alphabet. A default over V is an expression of the form 

“ϕ : ψ1,…,ψn / χ” such that ϕ, ψ1,…,ψn and χ are closed predicate logic formulae 

over V and n > 0. The formula ϕ is the prerequisite (pre), ψ1…ψn are the 

justifications (just), and χ is the consequent (cons) of the default. Intuitively, the 

default “ϕ : ψ1,…,ψn / χ” means that “if ϕ is known and if it is consistent to 

assume ψ1,…,ψn, then conclude χ ”. If this is the case, we say that the default was 

fired. 

A default theory is a triple T = (V, Σ, Δ), where V is a first-order alphabet, Σ 

is a set of first-order formulae over V, called the axioms of T, and Δ is a countable 

set of defaults over V.  
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Let T = (V, Σ, Δ) be a default theory. A set Γ  of closed predicate logic 

formulae over V is an extension of T iff, for every closed predicate logic formula 

π over V, π ∈ Γ  iff Σ  ∪ Θ ⊨ π, where  

Θ ={ χ | “ϕ : ψ1,…,ψn / χ” ∈ Δ and ϕ ∈ Γ  and ¬(ψ1 ∧…∧ψn ) ∉ Γ  } 

An extension Γ  of a default theory T = (V, Σ, Δ) is therefore a maximal 

consistent set of formulae that can be derived from the axioms in Σ and a maximal 

set of defaults in Δ that can be fired in the extension (without producing 

inconsistencies). Generally speaking, extensions represent maximal possible 

world views that are based on the given default theory and that extend the 

underlying knowledge base (the facts that are known for sure) with plausible 

conjectures based on the defaults. 

In this thesis, we adopt a very restricted form of default that is sufficient for 

formalizing the concept of a consistent data mashup.  

Let V be a vocabulary, as defined in Section 2.4. A simple default over V is 

an expression of the form “: δ / δ” such that δ is an assertion over V. Hence, a 

simple default has no pre-requisite and the justification and the consequent are the 

same assertion δ. The informal interpretation of “: δ / δ” is that we can assume δ if 

we do not have ¬δ; if this is the case, recall we said that the default was fired.  

We restrict our attention to simple defaults, as reasoning in this setting is 

decidable in general, when the underlying Default Logic is also decidable (Baader 

and Hollunder, 1995). We stress that such defaults are sufficient for the purposes 

of formalizing mashups.  

 

4.2  
Mashup Default Theories  

In this section, we show how to translate an ontology and a set of assertions to a 

default theory. In Section 4.4, we will prove that the extensions of the default 

theory induce consistent data mashups.  

Let O = (V, Σ) be an ontology, where V is a vocabulary and Σ is a set of 

constraints (the underlying logic is not relevant at this point). Let A be a finite set 

of assertions.  
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Definition 1: 

i) The translation of an assertion δ in A is the simple default “: δ / δ”. 

ii) The mashup default theory corresponding to O and A is the default theory  

T = (V, Σ, Δ) such that V is the vocabulary of O, Σ is the set of constraints of 

O, and Δ is the finite set of simple defaults over V that translate the assertions 

in A. 

iii) An extension Γ  of a mashup default theory T = (V, Σ, Δ) is a set Γ  of 

assertions and inclusions over V such that π ∈ Γ  iff π is a logical consequence 

of Σ  ∪ Θ, where Θ = { δ / “: δ / δ” ∈ Δ and ¬δ ∉ Γ  }. 

iv) A consistent data mashup for T = (V, Σ, Δ)  is an extension of T. ! 

Note that simple defaults in Definition 1 (i) are ground, as the assertions in 

A that originate them are ground formulae. Also note that the notion of extension 

in Definition 1 (iii) is just a restatement of the general notion of extension, 

introduced in Section 4.1.  

Intuitively, a set of assertions in A retrieved from the data sources will be 

considered together iff the corresponding simple defaults in Δ can be fired in the 

presence of the constraints in Σ. Furthermore, one should consider only maximal 

sets of such defaults to maximize the data retrieved from the data sources and 

shown to the user, without running into inconsistencies. But this is exactly the 

notion of extension, as further discussed in Section 4.4.  

 

4.3  
Case Study using Mashup Defaults  

This section illustrates the concepts introduced in Definition 1.  

Consider the same ontology as in Chapter 3. In particular, recall that the set 

of constraints Σ was given in Table 2.  

Example 2: Let A be the set of all assertions obtained from the data sources, after 

applying a set of matching rules. In this section, we suppose, for simplicity, that A 

is the following set of assertions: 

A = {B(a), p(a,b), A(a), p(a,c)} 

From the set of assertions that are logical consequences of A and from the 

set of constraints Σ, we obtain five (maximal) consistent subsets M of assertions, 

presented in Table 6 (which replaces Table 5 for the purposes of this example). 
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Table 6. Maximal consistent subsets of assertions. 

M1 B(a), C(a), ¬A(a), p(a,b), (≥1 p)(a), (≥1 p¯)(b), ¬(≥2 p)(a) 

M2 B(a), C(a), ¬A(a), p(a,c), (≥1 p)(a), (≥1 p¯)(c), ¬(≥2 p)(a) 

M3 A(a), C(a), ¬B(a), p(a,b), (≥1 p)(a), (≥1 p¯)(b), ¬(≥2 p)(a) 

M4 A(a), C(a) , ¬B(a), p(a,c), (≥1 p)(a), (≥1 p¯)(c), ¬(≥2 p)(a)  

M5 ¬C(a), ¬B(a), ¬A(a), p(a,b), p(a,c), (≥1 p¯)(b), (≥1 p¯)(c), (≥2 p)(a) 

 

Now, we adapt our case study to default theories.  

We first map the ontology O = (V, Σ) and the assertions A into a mashup 

default theory T = (V, Σ, Δ), as in Definition 1, and consider a consistent data 

mashup as an extension of this theory. Each assertion in A is translated into a 

simple default, generating the set of defaults Δ = { δ1 , δ2 , δ3 , δ4}, where:  

δ1 = “: B(a) / B(a)”  δ2 = “: p(a,b) / p(a,b)”  

δ3 = “: A(a) / A(a)”   δ4= “: p(a,c) / p(a,c)” 

Table 7 presents the five extensions of the default theory T, which in fact 

correspond to the five (maximal) consistent subsets of assertions shown in Table 

6. For simplicity, we omit from the extension the derived inclusions, that is, we 

list only the assertions. In the last column of Table 7, we indicate which defaults 

were fired to obtain the extension. For example, to obtain extension Γ1, default  

δ1 = “: B(a) / B(a)” was fired to generate assertion B(a), and default  

δ2 = “: p(a,b) / p(a,b)” was fired to generate assertion p(a,b). The other assertions 

of Γ1 were generated considering the set of constraints Σ.  

 

Table 7. Assertions in the extensions of the default theory T. 

 Assertions in the extension Defaults fired 

Γ1 B(a), C(a), ¬A(a), p(a,b), (≥1 p)(a), (≥1 p¯)(b), ¬(≥2 p)(a) δ1, δ2 

Γ2 B(a), C(a), ¬A(a), p(a,c), (≥1 p)(a), (≥1 p¯)(c), ¬(≥2 p)(a) δ1, δ4 

Γ3 A(a), C(a), ¬B(a), p(a,b), (≥1 p)(a), (≥1 p¯)(b), ¬(≥2 p)(a) δ3, δ2 

Γ4 A(a), C(a), ¬B(a), p(a,c) , (≥1 p)(a), (≥1 p¯)(c), ¬(≥2 p)(a) δ3, δ4 

Γ5 ¬C(a), ¬B(a), ¬A(a), p(a,b), p(a,c), (≥1 p¯)(b), (≥1 p¯)(c), (≥2 p)(a) δ2, δ4 
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If we fired more defaults in each extension, we would generate 

inconsistencies. So, the assertions that belong to each extension Γ i are those that 

are logical consequence of the constraints of Σ and the consequents of a subset of 

the defaults in Δ, and that represent maximal consistent subsets. In the next 

chapter, we will explain how to compute such extensions. 

 

4.4  
Correctness of the Default Model for Mashups  

Consider the following problem, which we call Ontology Mashup Problem:  

Instance: An ontology O = (V, Σ) and be a finite set A of assertions over V.  

Question: Find a maximal set of assertions M such that M ⊆ A and Σ ∪ Μ  

is consistent. We say that M is an answer to the problem defined by O 

and A. 

The set Α  models data obtained from the data sources to populate the classes 

and properties in V. Note that Σ ∪ Α  may not be satisfiable, as illustrated in 

Chapter 3. The set of assertions derivable from Σ ∪ Μ  (and not just the assertions 

in M) represents the data that the user observes. Note that M is always a maximal 

subset of Α  such that Σ ∪ Μ  is consistent.  

In particular, if O = (V, Σ) is a ontology, we can prove that the 

Ontology Mashup Problem is NP-Complete by a reduction of the satisfiability 

problem of knowledge bases with equality and inequality constraints 

(Artale et al., 2009). 

We are now in a position to reformulate the Ontology Mashup Problem as 

the Default Logic Mashup Problem:  

Instance: The mashup default theory T = (V, Σ, Δ) corresponding to an 

ontology O = (V, Σ) and a finite set A of assertions over V.  

Question: Find an extension Γ  of T. We say that Γ  is an answer to the 

problem defined by T. 

In the rest of this section, we prove that we can map an instance of the 

Ontology Mashup problem into an equivalent instance of the Default Logic 

Mashup problem, which establishes the correctness of the default model for 

mashups. 

N
coreLite-DL

N
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Lemma 1:  

Let O = (V, Σ) be an ontology and A be the finite set of assertions over V. 

Let T = (V, Σ, Δ) be the mashup default theory corresponding to O and A.  

i) Let M be an answer to the problem defined by O and A. Let Γ  be the set of 

assertions and inclusions over V that are logical consequence of  

Σ  ∪ M. Then, Γ  is an extension of T. 

ii) Let Γ  be an extension of T. Let M ⊆ A be the set of assertions δ such that  

“: δ / δ” was fired in Γ . Then, M is an answer to the problem defined by O 

and A. 

 

Proof:  

Part (i).  

Let M be an answer to the problem defined by O and A. Then, we have: 

(1) M is a maximal set of assertions such that M ⊆ A and Σ  ∪ Μ  is consistent. 

Define Γ  as the following set of assertions and inclusions over V: 

(2) π ∈ Γ  iff π is a logical consequence of Σ  ∪ M. 

Define Θ as the following set of assertions over V: 

(3) Θ = { δ / “: δ / δ” ∈ Δ and ¬δ ∉ Γ  } 

By (1), Σ  ∪ Μ  is consistent. Hence, by (2), we have: 

(4) For each assertion δ ∈ A, if δ ∈ M then ¬δ ∉ Γ . 

By (1), M is maximal. Hence, by (2), we have: 

(5) For each assertion δ ∈ A, if ¬δ ∉ Γ  then δ ∈ M.  

Indeed, assume that there is an assertion δ’ ∈ A such that ¬δ’ ∉ Γ  and δ’ ∉ M. 

Then, since ¬δ’ ∉ Γ , we define M’ = M ∪ {δ’} so that Γ  ∪ M’ would be 

consistent. Since M ⊆ M’ ⊆ A, we have that M is not maximal, which contradicts 

(1) Hence, (5) holds. 
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Then, from (3), (4) and (5), and the definition of Δ, we have:  

(6) Θ ={ δ / “: δ / δ” ∈ Δ and ¬δ ∉ Γ  }={ δ / “: δ / δ” ∈ Δ and δ ∈ M }=M 

Hence, by (2) and (6), we have:  

(7) π ∈ Γ  iff π is a logical consequence of Σ  ∪ Θ. 

That is, Γ  is an extension of T. 

Part (ii).  

Let Γ  be an extension of T. Then, by Definition 1, we have: 

(8) π ∈ Γ  iff π is a logical consequence of Σ  ∪ Θ, 

where Θ = { δ / “: δ / δ” ∈ Δ and ¬δ ∉ Γ  } 

Then, by reversing the argument in Part (i), we can show that Θ is an answer to 

the problem defined by O and A. o 

 

Lemma 1, indeed, establishes that we can map an instance of the Ontology 

Mashup problem into an equivalent instance of the Default Logic Mashup 

problem. 

 

4.5  
Summary    

Recall from Section 3.8 the following question: 

 

Q4. How to create a (maximal) consistent subset M of the set of the assertions 

collected from the data sources in such a way that M is consistent with the 

mashup constraints?  

 

In this chapter, we discussed how to rephrase this question as the central 

problem of Default Logic, viz., how to compute extensions. Repeating the 

argument just after Definition 1, a set of assertions in A retrieved from the data 

sources will be considered together iff the corresponding simple defaults can be 

fired in the presence of the constraints. Furthermore, one should consider only 
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maximal sets of such defaults to maximize the data retrieved from the data sources 

and shown to the user, without running into inconsistencies.  
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5  
Computing Consistent Data Mashups 

In this chapter, we first describe methods to compute consistent data mashups: a 

brute force method; an operational method, called process trees; and a new 

method, called mashup default trees. Then, we discuss how to test the consistency 

of a positive set of assertions against an ontology and present an optimized 

procedure for ontologies. Finally, we present heuristics to improve the 

performance of the mashup default tree method. 

 

5.1  
A Brute Force Method to Compute Extensions 

A brutel force or exhaustive method consists of systematically enumerating all 

candidate solutions of a problem and checking whether each candidate solution is 

indeed a solution for the problem. Although brute force methods are simpler to 

implement and they are usually capable of finding a solution; if it exists, their cost 

is proportional to the number of candidate solutions that, in many practical 

problems, tends to grow very quickly as the size of the problem increases. 

Therefore, such methods should be typically used when the problem size is 

limited, or when the simplicity of the implementation is more relevant than the 

performance that must be achieved.  

In this section, we introduce a brute force method to compute extensions of 

a default theory T = (V, Σ, Δ), under the assumption that Δ is a finite set of generic 

defaults. Section 5.3 will discuss how to compute extensions of mashup default 

theories, i.e, default theories with simple defaults only. 

 

 

 

N
coreLite-DL
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We note that, for generic defaults, the order in which the defaults are fired 

do matter. Therefore, the brute force method has to test sequences of defaults, and 

not just sets. For example, consider the following defaults: 

1. : A / A 

2. A : B / B 

3. B : C / C 

Then, such defaults can only be fired in the above order to generate a 

maximal extension, since one default makes the pre-condition of the next true.  

Note that, a candidate solution, in this case, is defined by a sequence of 

defaults in Δ. Therefore, if there are n defaults in Δ, the number of candidate 

solutions is C = ( n! / (n - 1)! ) + ( n! / (n - 2)! ) + … + ( n! / (n - n)! ) + 1, that is, 

the number of subsequences of elements of Δ. Therefore, the complexity of the 

force brute method is at maximum factorial, i.e., O(n!), provided that we can 

check the consistency of firing a finite set of generic defaults in the presence of a 

set of constraints in exponential time. 

Figure 2 shows, in pseudo code, the Compute_Brute_Force procedure, a 

simple brute-force algorithm that generates and examines all candidate solutions 

in a systematic and exhaustive manner and returns only the maximal ones.   

Compute_Brute_Force uses the Test-Consistency procedure, which tests 

the consistency of a set of assertions against a predefined set of constraints Σ. The 

construction of such procedures depends on the type of constraints allowed, and it 

will be discussed in Section 5.4.  

Compute_Brute_Force orders the obtained sequences of defaults in 

descending lexicographic order. By lexicographic order, we mean the total order, 

denoted <s, for the sequences of defaults in Δ induced by the order of the defaults 

in Δ. For example, we have [δ1 , δ2 , δ4] <s [δ1 , δ3 , δ4], since 124 < 134, and [δ1 , δ4] 

<s [δ1 , δ2 , δ3], since 14 < 123. 
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We now apply the brute force method to the example of Chapter 3.  
 
Example 3: Suppose, again, for simplicity that the set of assertions A is: 

A = {B(a), p(a,b), A(a), p(a,c)} 

Recall that the set of constraints is: 

Σ  = { (≥1 p¯) ⊑ D, C ⊑ (≥1 p), C ⊑ ¬(≥2 p), A ⊑ C, B ⊑ C, A ⊑ ¬B } 

and that the set of defaults is Δ = {δ1 , δ2 , δ3 , δ4}, where:  

δ1 = “: B(a) / B(a)”  δ2 = “: p(a,b) / p(a,b)”  

δ3 = “: A(a) / A(a)”   δ4= “: p(a,c) / p(a,c)” 

 

Step 1: Construct the set L of all possible sequences of Δ. Order the sequences in 

L by descending lexicographic order in a list L1,...,Lm; 

In this step, as n = 4, the number C of sequences of Δ is (4! / 3! ) + (4! / 2! ) 

+ (4! / 1! ) + ( 4! / 0! ) + 1 = 65.  

In decreasing lexicographic order, the sequences are: 

void	
  Compute_Brute_Force	
  (T,	
  Θ):	
  
Input:	
   a	
  default	
  theory	
  T=(V,Σ,Δ),	
  where	
  Δ	
  is	
  a	
  finite	
  set	
  of	
  generic	
  defaults	
  
Output:	
   a	
  set	
  Θ	
  of	
  maximal	
  sequences	
  of	
  the	
  defaults	
  in	
  Δ	
  
	
  
1. begin	
  
2. 	
  	
  Construct	
  the	
  set	
  L	
  of	
  all	
  possible	
  sequences	
  of	
  the	
  defaults	
  of	
  Δ;	
  
3. 	
  	
  Order	
  the	
  sequences	
  in	
  L	
  by	
  descending	
  lexicographic	
  order,	
  	
  

	
  	
  	
  	
  	
  	
  	
  creating	
  a	
  list	
  L1,...,Lm;	
  
4. 	
  	
  for	
  each	
  	
  i=1	
  	
  to	
  	
  m	
  	
  do	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   /*	
  Test	
  consistency	
  of	
  Li	
  against	
  Σ	
  	
  	
  */	
  
5. 	
  	
  	
  	
  	
  	
  if	
  Test-­‐Consistency	
  (Σ	
  ,	
  cons(Li))	
  	
  
6. 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  then	
  	
  	
  	
  Flag[i]	
  =	
  true;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   /*	
  Li	
  is	
  a	
  candidate	
  solution	
  	
   */	
  
7. 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  else	
  	
  	
  	
  	
  Flag[i]	
  =	
  false;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   /*	
  Li	
  is	
  not	
  a	
  candidate	
  solution	
  	
   */	
  
8. 	
  	
  	
  	
  	
  	
  	
  	
  
9. 	
  	
  Θ	
  =	
  ∅;	
  	
  
10. 	
  	
  for	
  each	
  	
  i=1	
  	
  to	
  	
  m	
  	
  do	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   /*	
  Test	
  if	
  each	
  Li	
  is	
  maximal	
  or	
  not	
  	
  */	
  
11. 	
  	
  	
  	
  	
  if	
  	
  	
  Flag[i]	
  
12. 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  then	
  begin	
  
13. 	
  	
   Θ	
  =	
  Θ	
  ∪	
  {	
  Li	
  };	
  	
  	
   /*	
  Li	
  is	
  a	
  maximal	
  candidate	
  solution	
   */	
  
14. 	
  	
   for	
  each	
  	
  k	
  =	
  i+1	
  	
  to	
  	
  m	
  	
  do	
   /*	
  (ordered	
  by	
  descending	
  lexic.)	
   */	
  
15. 	
  	
   if	
  Lk	
  is	
  a	
  subset	
  of	
  Li	
  	
   /*	
  Lk	
  is	
  not	
  a	
  maximal	
  candidate	
   */	
  
16. 	
  	
  	
   then	
  Flag[k]	
  =	
  false;	
  	
  	
   /*	
  solution	
   */	
  
17. 	
  	
  	
  	
   	
   	
  	
  end	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18. end;	
  

	
  
	
  Figure 2. A brute-force algorithm to determine all maximal sequences of a set of defaults. 
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           L = { [δ4, δ3, δ2,  δ1], [δ4, δ3,  δ1,  δ2], [δ4, δ2,  δ3,  δ1], [δ4, δ2,  δ1,  δ3],  

                     [δ4, δ1, δ3, δ2], [δ4, δ1, δ2, δ3], …, [δ1, δ2,  δ3,  δ4], 

                     [δ1, δ3, δ2], [δ1, δ2, δ4], [δ1, δ2, δ3],  

                     [δ1, δ4, δ3], [δ1, δ4, δ2], [δ1, δ3, δ4],  

                     [δ2, δ3, δ1], [δ2, δ1, δ4], [δ2, δ1, δ3],  

                     [δ2, δ4, δ3], [δ2, δ4, δ1], [δ2, δ3, δ4],  

                     [δ3, δ2, δ1], [δ3, δ1, δ4], [δ3, δ1, δ2],  

                     [δ3, δ4, δ2], [δ3, δ4, δ1], [δ3, δ2, δ4],  

                     [δ4, δ2, δ1], [δ4, δ1, δ3], [δ4, δ1, δ2],  

                     [δ4, δ3, δ2], [δ4, δ3, δ1], [δ4, δ2, δ3],  

       [δ1, δ4], [δ1, δ3], [δ1, δ2],  

                     [δ2, δ4], [δ2, δ3], [δ2, δ1], 

                     [δ3, δ4], [δ3, δ2], [δ3, δ1], 

                     [δ4, δ3], [δ4, δ2], [δ4, δ1], 

                               [δ4], [δ3], [δ2], [δ1],  

                      ∅}  

Note that we have to consider the empty sequence, since it might be the case 

that no defaults can be fired. 

Step 2: Test the consistency of cons(Li) against the set of constraints Σ and mark 

each sequence with true or false (recall that each sequence represents a candidate 

solution). 

In our example, the following sequences are marked with true:  

[δ1], [δ2], [δ3], [δ4], [δ1, δ2], [δ1, δ4], [δ2, δ3], [δ2, δ4], [δ3, δ4], …  

and the following sequences are marked with false:  

[δ1, δ3], ... 

Step 3: By descending lexicographic order, keep only in L the sequences of 

defaults that are the largest candidate solutions and add them to Θ. Finally, return 

to the user only the maximal candidate solutions: 

Θ = { [δ1, δ2], [δ1, δ4],  

           [δ2, δ3], [δ2, δ4],  

           [δ3, δ4] }         

From Θ, we can build a set S of the maximal subsets of the consequents of 

simple defaults: 
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S = {{B(a), p(a,b)}, {B(a), p(a,c)},  

          {p(a,b), A(a)}, {p(a,c), A(a)},  

  {p(a, b), p(a,c)}} 

 

5.2  
Process Trees  

In this section, we summarize a method to obtain extensions of (generic) default 

theories, called process trees, proposed by Antoniou (1999). Process trees offer a 

much more reasonable alternative to the brute force method, and yet compute all 

extensions of a (generic) default theory. Furthermore, the theory behind process 

trees does not assume that the set of defaults is finite, as in the brute force method 

described in Section 5.1. Again, Section 5.3 will discuss how to compute 

extensions of mashup default theories (with simple defaults only).  

We recall that a (generic) default over an alphabet V is an expression of the 

form “ϕ : ψ1,…,ψn / χ” such that ϕ, ψ1,…,ψn and χ are closed predicate logic 

formulae over V and n > 0. The formula ϕ is the prerequisite (pre denotes this 

formula), ψ1…ψn are the justifications (just denotes this set of formulae), and χ is 

the consequent (cons denotes this formula) of the default.  

Also recall that a default “ϕ : ψ1,…,ψn / χ” is applicable to a set of formulae 

Φ iff ϕ ∈ Φ  and ¬ψ1 ∉ Φ,…, ¬ψn ∉ Φ  (that is, each ψi is consistent with Φ).   

In what follows, let T = (V, Σ, Δ) be a default theory, where Δ is a (finite or 

infinite) set of (generic) defaults. 

Let ∏ = (δ0, δ1, …) be a finite or infinite sequence of (generic) defaults from 

Δ without multiple occurrences. Consider that ∏ is a possible order in which we 

fire some of the defaults in Δ. We associate two sets of first-order formulae with 

∏, In(∏) and Out(∏), defined as follows: 
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• In(∏) = Th(Σ ∪ {cons(δ) / δ occurs in ∏}) 

In(∏) collects the information gained by the application of the defaults in 

∏ and represents the current knowledge base after the defaults in ∏ have 

been fired.  

• Out(∏) = {¬ψ / ψ ∈ just(δ), for some δ occurring in ∏} 

Out(∏) collects formulae that should not turn out to be true, i.e., that 

should not become part of the current knowledge base, even after the 

defaults in ∏ have been subsequently fired. 

We denote the initial segment of ∏ of length k by ∏[k], meaning that the 

length of ∏ is at least k.  

We say that ∏ = (δ0, δ1, … , δk, …)  is a process of T iff δk is applicable to 

In(∏[k]), for every k ≥ 0.  

Given a process ∏ of T, we say that  

• ∏ is successful  iff In(∏) ∩ Out(∏) = ∅, otherwise it is failed. 

• ∏ is closed iff every δ ∈ Δ that is applicable to In(∏), δ already occurs in 

∏.  

The successful processes correspond to extensions, maximal or not. The 

closed processes capture the property of an extension being closed under the 

application of defaults in Δ; this means that we should not stop firing defaults 

until we are forced to (until we reach a contradiction), or until we fire all possible 

(applicable) defaults.  

Finally, a set of formulae Γ  is an extension of T iff there is some closed and 

successful process ∏ of T such that Γ  = In(∏).  

Based on the previous definitions, Antoniou (1999) proposed a canonical 

tree, called a process tree, which organizes all possible processes of T. A process 

tree has the following characteristics: 

• The nodes are labeled with two sets of first-order formulae (In-set and 

Out-set);  

• The edges are generated by firing defaults and are labeled, at each step, 

with the name of the default that is being fired;  

• The paths, starting at the root node, correspond to the processes of T. 
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Furthermore, a process tree is correct and complete, as it computes all 

extensions of a default theory T, according to Theorem 1. 

 

Theorem 1: Let T = (V, Σ, Δ) be a default theory, where Δ is a (finite or infinite) 

set of (generic) defaults. If ∏ is a closed successful process of T, then In(∏) 

is an extension of T. Conversely, for every extension Γ  of T, there exists a 

closed, successful process ∏ of T with Γ  = In(∏). 

Proof: 

(See Antoniou and Sperschneider (1993)). o 

 

Example 4: Consider the default theory T = (V, Σ, Δ) with Σ = ∅ and Δ = {δ1, δ2} 

with δ1 = “TRUE : p /¬q” and δ2 = “TRUE : q / r”. The process tree (Figure 3) 

shows that T has only one extension. 

For ∏ = (δ1), we have In(∏) = {¬q} and Out(∏) = {¬p}. As In(∏) ∩ 

Out(∏) = ∅, this process is successful. As there are no more defaults to apply, 

this process is closed.  

For ∏ = (δ2, δ1), we have In(∏) = {r, ¬q} and Out(∏) = {¬q, ¬p}. As 

In(∏) ∩ Out(∏) = {¬q}, this process is failed. 

So, the default theory T has only one extension, named Th({¬q}). 

 

 
 

In-set: Th({r})        Out-set:{¬q} 

In-set: Th({¬q, r})           Out-set:{¬q, ¬p} 

Failed 

In-set: Th({¬q})        Out-set:{¬p} 

Closed and successful 

In-set: Th({∅})        Out-set:{∅} 

δ2 δ1 

δ1 

Figure 3. A process tree for Example 4. 
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5.3  
Mashup Default Trees 

In this section, we first show how to adapt the process trees introduced in Section 

5.2 to mashup default theories. Inspired on such adaptation, we then propose a 

method to compute extensions of mashup default theories, called mashup default 

trees.  

 

5.3.1  
Process Trees for Mashup Default Theories 

In what follows, let T = (V, Σ, Δ) be a mashup default theory. Then, all defaults in 

Δ are simple, that is, of the form “:ψ / ψ”. 

The definitions in Section 5.2 then become much simpler. In particular, we 

can prove the following simple lemma. 

 

Lemma 2: Let ∏ = (δ0, δ1, …) be a finite or infinite sequence of defaults from Δ 

without multiple occurrences. Assume that Σ is consistent and that δk is of the 

form “:ψk / ψk”, for every k ≥ 0.  

(i) ∏ is a process of T iff, for every k, ¬ψk ∉ In(∏[k]). 

(ii) ∏ is a successful process iff In(∏) is consistent. 

 

Proof: 

Let ∏ = (δ0, δ1, …) be a finite or infinite sequence of defaults from Δ without 

multiple occurrences. Assume that Σ is consistent and that δk is of the form  

“:ψk / ψk”, for every k ≥ 0. 

 

(i) By definition of process, we have: 

(1) ∏ = (δ0, δ1, … , δk, …) is a process of T iff, for every k ≥ 0, δk is applicable 

to In(∏[k])  

Now, for every k ≥ 0, since δk is applicable to In(∏[k]), we have: 

(2)  δk is applicable to In(∏[k]) iff ¬ψk ∉ In(∏[k])  

From (1) and (2), we have: 

(3)  ∏ is a process of T iff, for every k, ¬ψk ∉ In(∏[k]) 
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(ii) First recall that:  

(4) In(∏) = Th(Σ ∪ {ψk / δk = “:ψk / ψk” occurs in ∏}) 

(5) Out(∏) = {¬ψk / for some δk = “:ψk / ψk” occurring in ∏} 

 

(⇒) Assume that ∏ is a successful process of T. By definition of successful 

process, we have: 

(6)  In(∏) ∩ Out(∏) = ∅ 

Hence, from (4), (5) and (6), we have:  

(7)  For every k, ¬ψk ∉ In(∏) 

But, since Σ is consistent, by (7), we have: 

(8)  In(∏) is consistent. 

 

(⇐) Assume that In(∏) is consistent. Then, we have: 

(9)  For every δk = “:ψk / ψk” that occurs in ∏, ¬ψk ∉ In(∏) 

Hence, from (4), (5) and (9), we have: 

(10)  In(∏) ∩ Out(∏) = ∅ 

Therefore, ∏ is a successful process of T. o 

 

Lemma 3: Let ∏ be a successful process of T. Assume that Σ is consistent. Then, 

any other sequence ∏’ that has exactly the same defaults as ∏, perhaps in a 

different order, is also a successful process of T. 

 

Proof: 

Let ∏ be a successful process of T and ∏’ be another sequence that has exactly 

the same defaults as ∏, perhaps in a different order. But, then In(∏) = In(∏’). By 

Lemma 2(ii), In(∏) is consistent, and so is In(∏’). Again, by Lemma 2(ii), ∏’ is a 

successful process of T. o 

 

From Lemmas 2 and 3, we may immediately conclude that the process trees 

introduced in Section 5.2 can be simplified. We call mashup default trees the 

simplified version, which are constructed as follows: 
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• By Lemma 2(i), to construct a process, it suffices to test, for each node N, if 

¬ψ ∉ Th(Σ ∪ {ψ / “:ψ / ψ” labels an edge of ΡN }), where ΡN is the path from 

the root to N. 

• By Lemma 2(ii), to detect if a process is successful, if suffices to compute 

only the In-set of each node. Indeed, the Out-set is unnecessary, since it 

suffices to test the In-set for consistency. 

• By Lemma 3, it suffices to consider the defaults in a pre-defined, arbitrary 

order. Then, it suffices to generate the edges by firing the simple defaults in 

the given order and label the edges with the name of the simple default that is 

being fired.  

 

Again, the paths, starting at the root node, correspond to the processes of T. 

Furthermore, for a fixed order of the defaults, the mashup default tree is unique.  

Formally, mashup default trees are defined as follows: 

 

Definition 2: Let T = (V, Σ, Δ) be a mashup default theory. Assume that Σ is 

consistent and that Δ = {δ1 , ... ,  δn} is a finite, ordered set of simple defaults.  

(i) The mashup default tree TT for T is the n-ary tree, with an ordered set of 

children for each node and edges labeled with defaults from Δ, constructed 

as follows: 

(a) The root of TT has n children and the edge from the root to the kth 

child is labeled with δk, for each k ∈ [1,n]. 

(b) Let N be an interior node of TT. Assume that the edge from the father 

of N to N is labeled with δj. Then, N has (n – j) children, and the edge 

from N to the kth child is labeled with δk, for each k ∈ [j+1,n].    

(ii) Let N be a node of TT. Let ΔN be the set of all defaults that label the edges of 

the path from the root of TT to N. We say that ΔN is the set of defaults fired 

up to N.  

(iii) Let N be a node of TT. We say that N is a successful node iff Th(Σ ∪ {ψ / 

“:ψ / ψ”  occurs in ΔN }) is consistent; otherwise we say that N is a failure 

node. ! 
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The following theorem establishes some basic properties of mashup defaults trees 

that lead to the correctness of the procedure to compute extensions of mashup 

default theories presented in the next section. 

   

Theorem 2: Let T = (V, Σ, Δ) be a mashup default theory. Assume that Σ is 

consistent and that Δ = {δ1 , ... ,  δn} is a finite, ordered set of simple defaults. 

Let TT be the mashup default tree for T. Then, we have: 

(i) For any subset Δ’ ⊆ Δ, there is a node N of TT such that Δ’ = Δ N. 

(ii) If N is a successful node, then any ancestor of N is also a successful node.  

(iii) If N is a failure node, then any descendent of N is also a failure node. 

(iv) Γ is an extension of T iff there is a successful node N of TT such that Γ = 

Th(Σ ∪ {ψ / “:ψ / ψ”  occurs in ΔN }) and there is no other successful node 

M of TT such that ΔN ⊂ ΔM (that is, ΔN is a strict subset of ΔM).  

 

Proof: 

(i) Let Δ’ ⊆ Δ. Assume that {𝛿!! ,… , 𝛿!!} is the set of all defaults in Δ’, in the same 

order as in Δ. By Definition 2-(i-a), there is an edge labeled with  𝛿!!from the root 

of TT to a node 𝑛!! of TT and, by Definition 2-(i-b), there is an edge labeled 

with  𝛿!!!!from node 𝑛!! of TT to a node 𝑛!!!! of TT, for p ∈ [1,k-1]. So, there is a 

node N =  𝑛!! of TT such that the edges in the path from the root of TT to N are 

labeled with 𝛿!! ,… , 𝛿!!. Therefore, we have that ΔN =  {𝛿!! ,… , 𝛿!!}, by Definition 

2-(ii).  

(ii) Follows directly from the definition of successful node. Indeed, if M is an 

ancestor of N, then ΔM ⊂ ΔN. Let Γ M = Th(Σ ∪ {ψ / “:ψ / ψ”  occurs in ΔM }) and 

Γ N = Th(Σ ∪ {ψ / “:ψ / ψ”  occurs in ΔN }). Then, since ΔM ⊂ ΔN, we have that Γ 
M ⊂ Γ N. Therefore, if Γ N is consistent, so is Γ M. 

(iii) Follows likewise from the definition of failure node.  

(iv) (⇐) Let N be a successful node N of TT and Γ N = Th(Σ ∪ {ψ / “:ψ / ψ”  

occurs in ΔN}). Then, Γ N is consistent, by definition of successful node. Assume 

that there is no other successful node M of TT such that ΔN ⊂ ΔM. Then, ΔN is a 
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maximal set of defaults such that Th(Σ ∪ {ψ / “:ψ / ψ”  occurs in ΔN}) is 

consistent. Therefore, Γ N is an extension of T.  

(⇒) Let Γ be an extension of T. Then, there is a maximal (finite) set Δ’ of defaults 

in Δ such that Γ = Th(Σ ∪ {ψ / “:ψ / ψ”  occurs in Δ’}) and Γ is consistent. By (i), 

there is a node N of TT such that the path from the root of TT to N is such that  

ΔN = Δ’. Thus, Γ = Th(Σ ∪ {ψ / “:ψ / ψ”  occurs in ΔN}). Since Γ is consistent, N 

is a successful node. Furthermore, since Δ’ = ΔN is maximal, there is no other 

successful node M of TT such that ΔN ⊂ ΔM.   o 

 

5.3.2  
Traversing a Mashup Default Tree 

In this section, we discuss how to traverse a mashup default tree, using an 

intuitive example. But first we need to provide some additional concepts. 

Backtracking is a general algorithm for finding solutions to some 

computational problems, notably constraint satisfaction problems, which 

incrementally builds candidates to the solution, and that abandons a candidate c 

(“backtracks”) as soon as it determines that c cannot possibly be completed to 

reach a valid solution, because we have reached a contradiction. 

A depth-first search (DFS) strategy consists in traversing a tree starting at 

the root node and exploring as far as possible the nodes along each branch, before 

moving back to the previous node, i.e., before backtracking. 

We propose a method for traversing a mashup default tree in DFS. This 

method does not examine all possible scenarios, as the brute force method does, 

because it avoids building some branches of the tree (explained latter). 

Furthermore, it obtains all possible candidate solutions to the problem. However, 

it returns to the user only the maximal ones.  

As in Section 5.1, we need to test the consistency of a set of assertions 

against a set of constraints. Such procedures will be discussed in Section 5.4. 

Let T=(V,Σ, Δ) be a mashup default theory and Δ be a finite set of simple 

defaults. This method obtains a set Θ of maximal subsets of the simple defaults in 

Δ. 

At each step, the method fires the next simple default δ from Δ, considered a 

list, and calls a consistency test. If the test fails, the procedure backtracks to a 
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previous candidate solution. Otherwise, it continues firing other simple defaults 

from the list Δ, in a DFS manner, until there are no more simple defaults to fire. In 

this case, the procedure finds a subset of the simple defaults in Δ that represents a 

candidate solution (the set Θ of candidate solutions). Then, it goes back to the 

father node and starts again. Finally, it returns only the maximal candidate 

solutions (the maximal candidate solutions of Θ).  

Before providing a concrete example, we note that a mashup default tree T 

has a typical topology, according to the number of considered simple defaults, and 

the order assumed for the defaults. For example, Figure 4 shows a mashup default 

tree generated from a set of four simple defaults, Δ = {δ1 , δ2 , δ3 , δ4}, considered 

in this order. 

First observe that each default δi (i = 1, …,4) is fired once, creating 4 sub-

trees of the tree T at the first level.  

After firing default δi, only defaults δj such that j > i are fired. For example, 

after we fire default δ1 at the root node, we subsequently fire defaults δ2, δ3 and δ4. 

After we fire default δ2 at the root node, we can only fire defaults δ3 and δ4. 

However, after we fire default δ3 at the root node, we can only fire default δ4. 

Finally, after we fire default δ4 at the root node, we have no more defaults to fire. 

Thus, the construction of the mashup default tree avoids building some branches. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. The typical topology of a mashup default tree with 4 defaults. 
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We now illustrate how this method executes with a concrete example. 
 

Example 5: We refer again to the example of Chapter 3. Suppose, again, for 

simplicity that the set of assertions A is: 

A = {B(a), p(a,b), A(a), p(a,c)} 

Recall that the set of constraints is: 

Σ  = { (≥1 p¯) ⊑ D, C ⊑ (≥1 p), C ⊑ ¬(≥2 p), A ⊑ C, B ⊑ C, A ⊑ ¬B } 

Assume that the set of simple defaults is Δ = {δ1 , δ2 , δ3 , δ4} where:  

δ1 = “: B(a) / B(a)”  δ2 = “: p(a,b) / p(a,b)”  

δ3 = “: A(a) / A(a)”   δ4= “: p(a,c) / p(a,c)” 

 

This method builds a mashup default tree from the set Δ. The prefixes of the 

branches of the tree correspond to the 2n -1 = 15 subsets of Δ (see Figure 4). That 

is, the prefixes of the branches correspond to the set Θ of candidate solutions 

(which represent candidate extensions):  

              Θ = { {δ1} , {δ1 , δ2}, {δ1 , δ2,  δ3}, {δ1 , δ2,  δ3,  δ4}, {δ1 , δ2,  δ4}, 

                                  {δ1, δ3}, {δ1, δ3, δ4}, {δ1 , δ4},  

                        {δ2}, {δ2, δ3}, {δ2 , δ3,  δ4},{δ2 , δ4}, 

                        {δ3}, {δ3 , δ4}, 

                        {δ4} }                   

Then, we eliminate from Θ the subsets of defaults that are inconsistent (with 

respect to the set of constraints – see the example in Chapter 3), or that are not 

maximal. Finally, we return to the user only the maximal candidate solutions: 

Θ = { {δ1 , δ2}, {δ1 , δ4},  

            {δ2, δ3}, {δ2 , δ4},  

             {δ3 , δ4} }         

From Θ, we can build a set S of the maximal subsets of the consequents of 

simple defaults: 

S = { {B(a), p(a,b)}, {B(a), p(a,c)},  

{p(a,b), A(a)}, {p(a,c), A(a)},  

{p(a, b), p(a,c)} } 
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5.3.3  
A Procedure to Compute Mashup Default Trees  

In this section, we provide a description of the procedure for traversing a mashup 

default tree in DFS, called Traverse_Mashup_Tree (Figure 5). The major points 

of this version are discussed in what follows. 

The set of solutions Θ is implemented using bit vectors of size MAX, the 

number of defaults in Δ={δ1,δ2,...,δMAX}. A subset Α of Δ is represented as a bit 

vector A[0..MAX-1] such that δi ∈ Α iff A[i-1] = 1. The operation subset(A, Θ) 

tests if a set A is a subset of a set in Θ; the operation add(A, Θ) adds a set A to Θ; 

and the operation cons(A) transforms a set A, represented in a bit vector into a set 

C of consequents of the defaults in Δ such that αi ∈ C iff A[i-1]=1 and  

δi = “: αi / αi” is the ith default in Δ. 

The for loop on line 4 and the while loop on line 14 simulate a pre-order 

traversal of the mashup default tree, with the help of a stack S of integers. The 

operations initialize(S), n=top(S), n=pop(S) and push(n,S) are as usual, while the 

operation set(S) transforms the integers in S into a set represented in a bit vector, 

respecting the order. For example, if the stack is S=(1,3) and MAX=4, then the 

corresponding bit vector will be [1,0,1,0]. 

If it is consistent to fire all defaults from M to MAX, then Λ = {δM, δM+1 ,..., 

δMAX} is a solution, if it is not a subset of a previous solution. Furthermore, firing 

all defaults from N to MAX, with N>M, will be a subset of Λ and therefore not a 

maximal solution. The process may then stop, as per lines 8 to 11. 

Test-Consistency(Σ, cons(set(S))) on line 20 tests if the consequents of the 

set of defaults represented in S are consistent with the set of assertions Σ. The 

consistency test is applied only if the set of defaults represented in S is not a 

subset of a solution, i.e., a set in Θ, as per line 18. If the consistency test succeeds, 

it indicates a solution only if the current set of defaults (represented in S) cannot 

be extended further, as per lines 23 and 31. Testing again, on line 25, if set(S) is 

not a subset of a solution is required because, even though this test has been 

performed in a previous step, the set of solutions might have been changed from 

the previous subset test to the new one (see Example 8). 

Lastly, we observe that the correctness of the Traverse_Mashup_Tree 

procedure follows from the previous remarks and Theorem 2. 
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Traverse_Mashup_Tree (T, Θ): 
Input: a mashup default theory T=(V,Σ, Δ), where Δ={δ1,δ2,...,δMAX} is a set of defaults 
Output: a set Θ of maximal subsets of the consequents of the simple defaults in Δ 
 
0. begin 
1.       Allocate a set of bit vectors Θ;                             /* Θ represents the solutions found.   */ 
2.       Allocate a stack S of integers; /* S is a stack to help search for solutions. */ 
3. initialize(S); 
4. for M = 1 to MAX do   /* MAX is the number of defaults in Δ.  */ 
5. begin                     
6.     Allocate a bit vector A with all bits set,  /* A represents from the Mth default (bit M-1) */ 
7.       from bit M-1 to bit MAX-1;   /*     to the last default (bit MAX-1). */ 
8.  if ¬subset(A, Θ)  /* If A is not a subset of a solution and */ 
9.  then if Test-Consistency(Σ , cons(A))               /*     it is consistent to fire all such defaults, */ 
10.          then begin add(A, Θ); exit end /* then there are no more solutions to find. */ 
11.  else exit;   /* (Likewise, when A is a subset of a solution). */ 
12.  push(M,S); 
13.   N = M;     
14.  while ¬empty(S) do 
15.   begin  
16.    N = N + 1;   
17.    push(N,S);   
18.    if  ¬subset(set(S), Θ)  
19.    then  /* The stack S is not a subset of a solution (and hence must be tested for consistency) */ 
20.      if ¬Test-Consistency(Σ , cons(set(S)))  
21.      then  begin /* The stack (with N on top) is not a consistent set of defaults  */ 
22.        N = pop(S);  /* Remove N from the stack */ 
23.        if N == MAX  /* If N is the last default, */ 
24.          then begin /* then the stack represents a solution, */  
25.       if  ¬subset(set(S), Θ)  /* only if it is not a subset of a solution. */ 
26.               then add(set(S), Θ);    
27.          N = pop(S); /* Backtrack. */ 
28.                   end 
29.        end 
30.      else   /* The stack is a consistent set of defaults (and is not a subset of a solution) */ 
31.       if N == MAX  /* If N is the last default, */ 
32.       then  begin  add(set(S), Θ);   /* then the stack represents a solution. */ 
33.          N = pop(S); /* Backtrack twice, if possible. */ 
34.         if ¬empty(S) then N = pop(S);  
35.        end 
36.    else  /* The stack S is a subset of a solution (and hence consistent) */ 
37.      if N == MAX   /* If N is the last default, */ 
38.      then begin N = pop(S);                     /* then backtrack twice, if possible.                 */ 
39.        if ¬empty(S) then N = pop(S);  
40.        end 
41.   end  
42.  end 
43.  end 

Figure 5. An implementation of the depth-first algorithm to determine all maximal subsets of a set of defaults in Δ. 
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Example 6: The mashup default tree in Figure 7 and Table 8 indicate the result of 

running Traverse_Mashup_Tree for the mashup default theory T=(V,Σ,Δ), 

where Σ  = { (≥1 p¯) ⊑ D, C ⊑ (≥1 p), C ⊑ ¬(≥2 p), A ⊑ C, B ⊑ C, A ⊑ ¬B } and 

the set of assertions A = { B(a), p(a,b), A(a), p(a,c) }.  

We recall that the constraint graph for the constraints is the one shown in 

Figure 6, and that the defaults are considered in the following order: 

1) “: B(a) / B(a)”   
2) “: A(a) / A(a)”    
3) “: p(a,b) / p(a,b)” 
4) “: p(a,c) / p(a,c)” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that the topology of the mashup default tree in Figure 7 is the same as 

the one showed in Figure 4, as both trees have 4 defaults. The difference is that in 

Figure 7 some branches of the tree were not built (could be avoided). 

  

(≥1 p¯) 

D 

¬(≥1 

¬D ¬A 

(≥2 p) ¬(≥2 p) 

A 

B ¬B 

(≥1 p) 

C ¬C 

¬(≥1 p) 

Figure 6. The constraint graph G(ΣM) for ΣM. 
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The label of a node N in Figure 7 indicates the following: 

• S (Success) – indicates that it is consistent to fire all defaults represented in the 
path from the root to N. 

• F (Fail) – indicates otherwise. 

• C (Cut) – indicates that N was not considered (N is a descendent of a node 
labeled with F). 

• A (Abandon) – indicates that N was abandoned because, although it is 
consistent to fire all defaults represented in the path from the root to N, this is 
not a maximal solution, since it is a subset of another solution. 
 

 

 
  

Figure 7. The mashup default tree for Example 6. 
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Table 8. A summary of the execution of Traverse_Mashup_Tree for Example 6. 

M=1  
(leftmost branch) 

M=2  
(central left branch) 

M=3  
(central right branch) 

Step Action 
 

S Test 
Result 

Step Action 
 

S Test 
Result 

Step Action 
 

S Test 
Result 

3 init λ    λ    λ  
8 subset?  fail  8 subset?  fail  8 subset?  fail  
9 consistent?  fail 9 consistent?  fail 9 consistent?  success 

12 push 1 1  12 push 2 2  10 add {3,4}   
17 push 2 1 2  17 push 3 2 3   exit   
18 subset? 1 2 fail  18 subset? 2 3 fail  M=4 

(rightmost branch) 20 consistent? 1 2 fail 20 consistent? 2 3 success 
22 pop -> 2 1   37 N=MAX?  fail     
23 N=MAX?  fail 17 push 4 2 3 4      
17 push 3 1 3   18 subset? 2 3 4 fail      
18 subset? 1 3 fail  20 consistent? 2 3 4 fail     
20 consistent? 1 3 success 22 pop -> 4 2 3   
31 N=MAX?  fail 23 N=MAX?  success 
17 push 4 1 3 4  25 subset? 2 3 fail      
18 subset? 1 3 4 fail  26 add {2,3} 2 3  
20 consistent? 1 3 4 fail 27 pop -> 3 2      
22 pop -> 4 1 3  17 push 4 2 4       
23 N=MAX?  success 18 subset? 2 4 fail      
25 subset? 1 3 fail  20 consistent? 2 4 success     
26 add {1,3} 1 3  31 N=MAX?  success     
27 pop -> 3 1  32 add {2,4} 2 4      
17 push 4 1 4   33 pop -> 4 2      
18 subset? 1 4 fail  34 pop -> 2 λ      
20 consistent? 1 4  success         
31 N=MAX?  success         
32 add {1,4} 1 4          
33 pop -> 4 1          
34 pop -> 1 λ          

 

Notes:  

a) The set {1,3} indicates that a maximal solution is obtained by firing the first and the third 
defaults, that is, a maximal set of assertions is {B(a), p(a,b)}. Furthermore, note that this set is 
represented as a bit vector [1,0,1,0], since there are 4 defaults.  

b) The central right branch is not traversed, since {3,4} represents the solution Λ34 = {p(a,b), 
p(a,c)}, that is, since it is consistent to fire defaults δ3 and δ4. Therefore, the rightmost branch 
also does not need to be traversed, since it would generate a candidate solution, {p(a,c)}, 
generated by firing just the default δ4, which is a subset of the solution Λ34. 

 

The complete set of solutions is: 

{1,3} or {B(a), p(a,b)}   {1,4} or {B(a), p(a,c)} 

{2,3} or {A(a), p(a,b)}   {2,4} or {A(a), p(a,c)} 

{3,4} or {p(a,b), p(a,c)} 
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Example 7: The mashup default tree in Figure 8 and Table 9 indicate the result of 

running the Traverse_Mashup_Tree for the mashup default theory and the 

assertions of Example 7, but now assuming that the ordered set of defaults is:  

1) “: B(a) / B(a)”   
2) “: p(a,b) / p(a,b)” 
3) “: A(a) / A(a)”   
4) “: p(a,c) / p(a,c)” 

 

This example illustrates that the order of firing the defaults leads to a 

different traversing of the mashup default tree, that is, to a different labeling of the 

nodes, but the solutions are the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 8. The mashup default tree for Example 7. 
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Table 9. A summary of the execution of Traverse_Mashup_Tree for Example 7. 

M=1  
(leftmost branch) 

M=2  
(central left branch) 

M=3  
(central right branch) 

Step Action 
 

S Test 
Result 

Step Action 
 

S Test 
Result 

Step Action 
 

S Test 
Result 

3 init λ    λ    λ  
8 subset?  fail  8 subset?  fail  8 {3,4} subset?  fail  
9 consistent?  fail 9 consistent?  fail 9 {3,4} consistent?  success 

12 push 1 1  12 push 2 2  10 add {3,4}   
17 push 2 1 2  17 push 3 2 3   exit   
18 subset? 1 2 fail  18 subset? 2 3 fail  M=4 

(rightmost branch) 20 consistent? 1 2 success 20 consistent? 2 3 success 
31 N=MAX?  fail 31 N=MAX?  fail     
17 push 3 1 2 3   17 push 4 2 3 4      
18 subset? 1 2 3 fail  18 subset? 2 3 4 fail      
20 consistent? 1 2 3 fail 20 consistent? 2 3 4 fail     
22 pop -> 3 1 2  22 pop -> 4 2 3   
23 N=MAX?  fail 23 N=MAX?  success 
17 push 4 1 2 4   25 subset? 2 3 fail      
18 subset? 1 2 4 fail  26 add {2,3} 2 3  
20 consistent? 1 2 4 fail 27 pop -> 3 2      
22 pop -> 4 1 2  17 push 4 2 4       
23 N=MAX?  success 18 subset? 2 4 fail      
25 subset? 1 2 fail  20 consistent? 2 4 success     
26 add {1,2} 1 2  31 N=MAX?  success     
27 pop -> 2 1  32 add {2,4} 2 4      
17 push 3 1 3   33 pop -> 4 2      
18 subset? 1 3 fail  34 pop -> 2 λ      
20 consistent? 1 3 fail         
22 pop -> 3 1          
23 N=MAX?  fail         
17 push 4 1 4          
18 subset? 1 4 fail          
20 consistent? 1 4 success         
31 N=MAX?  success         
32 add {1,4} 1 4          
33 pop -> 4 1          
34 pop -> 1 λ          

 

Note: The central right branch is not traversed, since {3,4} represents the solution Λ34 = {A(a), 

p(a,c)}, that is, since it is consistent to fire defaults δ3 and δ4. Therefore, the rightmost branch also 

does not need to be traversed, since it would generate a candidate solution, {p(a,c)}, generated by 

firing just the default δ4, which is a subset of the solution Λ34. 

 

The complete set of solutions is: 

{1,2} or {B(a), p(a,b)}   {1,4} or {B(a), p(a,c)} 

{2,3} or {p(a,b), A(a)}   {2,4} or {p(a,b), p(a,c)} 

{3,4} or {A(a), p(a,c)} 

that is exactly the same as in Example 6, as expected. 
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Example 8: The mashup default tree in Figure 9 and Table 10 indicate the result 

of running the Traverse_Mashup_Tree for the mashup default theory of 

Example 8, but assuming that the defaults (and their order) are:  

1) “: B(a) / B(a)”   
2) “: p(a,b) / p(a,b)” 
3) “: A(b) / A(b)”   (changed from A(a) to A(b)) 
4) “: p(a,c) / p(a,c)” 

 

This example illustrates that a slightly different default may lead to a rather 

different traversing of the mashup default tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

Figure 9. The mashup default tree for Example 8. 
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Table 10. A summary of the execution of Traverse_Mashup_Tree for Example 8. 

M=1  
(leftmost branch) 

M=2  
(central left branch) 

M=3  
(central right branch) 

Step Action 
 

S Test 
Result 

Step Action 
 

S Test 
Result 

M=4 
(rightmost branch) 

3 init λ    λ  

 8 subset?  fail  8 {2,3,4} subset?  fail  
9 consistent?  fail 9 {2,3,4} consistent?  success 

12 push 1 1  10 add {2,3,4}   
17 push 2 1 2   exit       
18 subset? 1 2 FAIL          
20 consistent? 1 2 success         
31 N=MAX?  fail         
17 push 3 1 2 3           
18 subset? 1 2 3 fail          
20 consistent? 1 2 3 success         
37 N=MAX?  fail         
17 push 4 1 2 3 4           
18 subset? 1 2 3 4 fail          
20 consistent? 1 2 3 4 fail         
22 pop -> 4 1 2 3          
23 N=MAX?  success      
25 subset?  fail      
26 add {1,2,3} 1 2 3          
27 pop -> 3 1 2      
17 push 4 1 2 4           
18 subset?  fail          
20 consistent?  fail         
22 pop -> 4 1 2           
23 N=MAX?  success         
25 subset? 1 2 SUCCESS         
37 N=MAX?  fail         
27 pop -> 2 1          
17 push 3 1 3           
18 subset?  fail          
20 consistent?  success         
31 N=MAX?  fail         
17 push 4 1 3 4           
18 subset?  fail          
20 consistent?  success         
31 N=MAX?  success         
32 add {1,3,4} 1 3 4          
33 pop -> 4 1 3          
34 pop -> 3 1          
17 push 4 1 4           
18 subset? 1 4 success         
37 N=MAX?  success         
38 pop -> 4 1           
39 pop -> 1 λ          
 

Notes:  

a) Note that the candidate solution represented by the set {1,2} is tested twice to verify if it is a 
subset of a solution (test results in boldface uppercase). Furthermore, note that the first test 
fails, whereas the second test succeeds. This illustrates why the subset test on line 25 is 
necessary. 

b) The central left branch is not traversed since {2,3,4} represents the solution Λ234 = {p(a,b), 
A(b), p(a,c)}, that is, since it is consistent to fire defaults δ2, δ3 and δ4. Therefore, the other 
branches also do not need to be traversed, since they would generate candidate solutions, 
which are subsets of the solution Λ234. 
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The complete set of solutions is: 

{1,2,3} or {B(a), p(a,b), A(b)} {1,3,4} or {B(a), A(b), p(a,c)} 

{2,3,4} or {p(a,b), A(b), p(a,c)} 

 

5.3.4  
Considerations on Heuristics for Building a Mashup Default Tree  

Heuristics are designed to take advantage of partial knowledge that we have about 

the solution of the problem.  

As we mentioned before, a mashup default tree can become prohibitively 

large, if we do not employed strategies to reduce it. Considering the restricted 

logics adopted in this text, one may suggest the following heuristics: 

1) Order the data sources by priority, i.e., by importance or relevance. Then, 

give preference to data that comes from the higher priority data sources, 

when adding the data to the mashup. 

2) Assume that the data that comes from each data source is consistent. Then, 

avoid redundant consistency tests for data that comes from the same data 

source. 

3) Give preference to the simple defaults that, when fired, generate the largest 

number of derived assertions in the constraint graph. 

4) Identify and isolate the simple defaults that cannot be fired together, as 

they generate assertions that are mutually inconsistent. 

The first heuristics means that we should begin the construction of a mashup 

default tree by firing the simple defaults that belong to the most relevant data 

sources. So, we should begin by considering data coming from the first reliable 

data source and then progressively get data from the other sources, in order to 

enrich the data mashup. We regard that the priority of the data sources to be 

combined is provided by the user, according to his/her criteria like reliability and 

time of existence, and it is static, as it does not change with the time. 

The second heuristics means that we can avoid making unnecessary 

consistency tests, if we assume that each data source returns data that is consistent 

with the constraints of the mashup ontology. 

The third heuristics means that we should first fire the simple defaults that 

propagate the largest number of assertions in the constraint graph, that is, the 
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assertions that label nodes with the largest number of descendents in the constraint 

graph.  

Finally, the forth heuristics means that we should analyze and separate the 

set of simple defaults that are mutually exclusive, as they would generate 

contradictory data. In fact, the construction of such tree branch can be avoided. 

Following such heuristics, we can hopefully find solutions in a less 

expensive way. 

 

5.4  
Testing Consistency  

5.4.1  
Testing Consistency of OWL 2 Ontologies 

In this section, we briefly summarize the results for the Ontology Consistency 

Problem for the OWL 2 profiles (OWL 2, 2012b).  

In the context of mashup default theories, the combined complexity, that is, 

the complexity measured with respect to the total size of the axioms and the 

assertions in the ontology, is the most relevant, since we must test consistency of a 

set of constraints and assertions. Table 11 summarizes the combined complexity 

of the Ontology Consistency Problem, which has been widely covered in the 

literature for the various OWL 2 profiles (OWL 2, 2012b).  

In general, if we assume that the mashup default theories use ontologies that 

satisfy a given profile, we may adopt the standard proof procedure for that profile 

to decide ontology consistency: 

• OWL 2 EL: the tableaux procedure for the EL dialect (Baader et al., 

2008), which is polynomial with respect to the size of the ontology. 

• OWL 2 QL: the proof procedure sketched in (Calvanese et al., 2007), 

which is polynomial with respect to the size of the ontology.  

• OWL 2 Direct Semantics: the proof procedure for the SHOIQ dialect 

(Horrocks and Sattler, 2005); even though the combined complexity is 

very high, this proof procedure has reasonable performance for typical 

OWL 2 ontologies (Horrocks and Sattler, 2005). 
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Table 11. Combined Complexity of the Ontology Consistency Problem for the OWL 2 

Profiles. 

Language Combined Complexity 

OWL 2 RDF-Based Semantics Undecidable 

OWL 2 Direct Semantics N2EXPTIME-complete (NEXPTIME-complete if the 
property hierarchy can be translated into a polynomially-
sized nondeterministic finite automaton) 

OWL 2 EL PTIME-complete 

OWL 2 QL NLogSpace-complete 

OWL 2 RL PTIME-complete 

OWL 1 DL NEXPTIME-complete 

 

5.4.2  
Testing Consistency of Lightweight Ontologies 

In this section, we discuss how to test the consistency of ontologies, 

which we call lightweight ontologies, to avoid the somewhat awkward denotation 

. We will work under the Unique Name Assumption (UNA). We show 

that constraint graphs lead to a consistent and complete decision procedure for the 

Lightweight Ontology Consistency Problem, which is cubic with respect to the 

total size of the axioms and the assertions in the ontology. The procedure is also 

amenable to be incrementally used in the context of mashup default trees.  

Figure 10 shows the Lightweight-Consistency procedure that tests 

consistency of a set of positive assertions against a lightweight ontology. In this 

test, a set of assertions is used to populate a constraint graph. Theorem 3 

establishes the correctness of the procedure and Theorem 4 its complexity. 

 

Theorem 3: Let O=(V,Σ) be a lightweight ontology and A be a set of positive 

assertions over V. Assume that Σ is consistent. Under the Unique Name 

Assumption, procedure Lightweight-Consistency(O, A) always stops and returns 

TRUE iff Σ ∪ A has a model, and FALSE, otherwise. 

 

Proof: 

(i) Since the constraint graph for a lightweight ontology is acyclic, the procedure 

always stops. 

N
coreLite-DL

N
coreLite-DL
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(ii) Suppose that the procedure stops with FALSE. Then, there is a node n such 

that both n and its dual  are labeled with a constant “a”. Hence, there is an 

expression e such than e labels n and  labels . But, we have that u ⊑ v, u(x) ⊨ 

v(x). Hence, by definition of the procedure, specially rules CGR2 to CGR5, we 

may show that Σ ∪ A ⊨ e(a) and Σ ∪ A ⊨ (a). But this implies that Σ ∪ A has 

no model. 

(iii) Assume that Σ is consistent. Suppose that the procedure stops with TRUE. 

Then, there is no node n such that both n and its dual  are labeled with a 

constant “a”. By modifying the construction of a Herbrand model for lightweight 

constraints (Casanova et al., 2010), under the Unique Name Assumption, it is 

possible to construct a model for Σ ∪ A. o 

 

Theorem 4: Let O=(V,Σ) be a lightweight ontology and A be a set of positive 

assertions over V. Then, the Lightweight-Consistency procedure is O(n(n2+k)), 

where k is the number of assertions in A, m is the number of constraints in Σ and n 

is the number of distinct terms that occur in the constraints in Σ. 

 

Proof: 

Let k be the number of assertions in A, m be the number of constraints in Σ and n 

be the number of distinct terms that occur in the constraints in Σ.  

The construction of the constraint graph G in Step CGR0 takes time 

proportional to (n(n+m)) (Magalhães, 2015).  

Using Warshall algorithm, the construction of G* in Step CGR1 takes time 

proportional to n3. 

Steps CGR2 to CGR4 run in time proportional to n.k since, for each of the n 

nodes, each for-loop can be performed by a simple scan over the k assertions.  

Step CGR5 takes time proportional to n2, which is the maximum number of 

edges of G*.  

Finally, Step CGR6 takes time proportional to n, since we need to inspect all 

nodes of G*. 

Thus, Lightweight-Consistency is O(n(n2+k)), since m ≤ n2. o 

 

n
e n

e

n
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The following examples illustrate how the procedure works and help 

understand the proof of Theorem 3. They also illustrate how the procedure can be 

used in conjunction with mashup default trees. 

 

Example 9: Consider the following set Σ of constraints, whose constraint graph 

was shown again in this chapter (in Figure 6).  

σ1: (≥1 p¯ ) ⊑  D 

σ2: C ⊑  (≥1 p) 

σ3: C ⊑ ¬(≥2 p) 

σ4: A ⊑ C 

σ5: B ⊑ C 

σ6: A ⊑ ¬B 

and assume the following set Δ of defaults: 

	
  
Procedure Lightweight-Consistency(O, A): 
Input: a lightweight ontology O=(V,Σ) and a set of positive assertions A over V 
Output: TRUE, if Σ ∪ A has a model, and FALSE, otherwise 
 
begin 
CGR0. Construct the constraint graph G=(N,E) for O; 
CGR1. Construct the transitive closure G* of G; 
  for each node N of G* do 
 begin 
 if N is labeled with a concept expression u  

then for each  assertion of the form u(a) in A do 
CGR2. label N with the constant “a”; 
 if N is labeled with a role expression of the form (≥n P) 

then for each  set of assertions of the form P(a,b1),...,P(a,bn) in A,  
where b1,...,bn are distinct constants do 

CGR3. label N with the constant “a”; 
 if N is labeled with a role expression of the form (≥n P¯) 

then for each  set of assertions of the form P(b1,a),...,P(bn,a) in A,  
where b1,...,bn are distinct constants do 

CGR4. label N with the constant “a”; 
 end 

 for each node N of G* do 
 for each node M of G* that is adjacent to N do  
CGR5.  Propagate all constants that label N to M; 
 for each node N of G* do 
CGR6. if N and its dual 𝑁!  are labeled with a constant “a”,  
 then return FALSE; 
 CGR7. return TRUE; 
end 

Figure 10. A procedure to test the consistency of a set of positive assertions 

against a lightweight ontology. 
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δ1.  “: B(a) / B(a)” 

δ2. “: p(a,b) / p(a,b)” 

δ3. “: p(a,c) / p(a,c)” 

Suppose that we fire all three defaults, generating the following set A of 

assertions: 

1. B(a)   (obtained by firing default δ1) 

2. p(a,b)   (obtained by firing default δ2) 

3. p(a,c)   (obtained by firing default δ3) 

 

The execution of Lightweight-Consistency for Σ and A generates the 

following steps (note that the procedure is non-deterministic, since the choice of 

which arc to process in CGR5 is non-deterministic): 

 

4. Label node B with “a”   1, by CGR2 

5. Label node (≥1 p) with “a”  2, by CGR3 

6. Label node (≥2 p) with “a”  2, 3, by CGR3 

7. Label node (≥1 p¯ ) with “b”  2, by CGR4 

8. Label node (≥1 p¯ ) with “c”  3, by CGR4 

9. Label node C with “a”  4, by CGR5 

10. Label node ¬A with “a”  4, by CGR5 

11. Label node ¬C with “a”  6, by CGR5 

12. Return FALSE   9, 11, by CGR6 

 

Since Lightweight-Consistency returns FALSE, by Theorem 3, Σ ∪ A has 

no model. Then, it is inconsistent to fire defaults δ1, δ2 and δ3 at the same time. o 

 

Example 10: Consider again the same set Σ of constraints and the same set Δ of 

defaults as in Example 9. Suppose that we fire just the first two defaults, 

generating the set B of assertions: 

1. B(a)     (fire default δ1) 

2. p(a,b)     (fire default δ2) 
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The execution of Lightweight-Consistency for Σ and B generates the 

following steps: 

3. Label node B with “a”   1, by CGR2 

4. Label node (≥1 p) with “a”  2, by CGR3 

5. Label node (≥1 p¯ ) with “b”  2, by CGR4 

6. Label node C with “a”  3, by CGR5 

7. Label node ¬A with “a”  3, by CGR5 

8. Label node D with “b”  5, by CGR5 

9.  Label node ¬(≥2 p) with “a”  6, by CGR5 

(No new application of CGR5 is possible and the loop ends) 

10. Return TRUE    by CGR7 

 

Since Lightweight-Consistency returns TRUE, by Theorem 3, Σ ∪ B has a 

model. Then, it is consistent to fire defaults δ1 and δ2 at the same time. Indeed, 

note that the above sequence of steps induces a model I for Σ ∪ B: 

11.  DI = { “a”, “b” }    

12.  aI = “a” and bI = “b” 

13.  BI = {“a” }   by 1 

14. PI = {(“a”, “b”)}  by 2 

15. CI = {“a” }   by 6 

16. (¬A)I = {“a” }   by 7 

17. AI = {“b” }   by 11, 16 

18. DI = {“b” }   by 8   o 

 

The next example illustrates that the Lightweight-Consistency procedure 

stops even when the set of constraints has no finite model. 

 

Example 11: Consider again the same set Σ of constraints and the same set Δ of 

defaults as in Example 9, with one additional constraint: 

0. D ⊑ A 

Let Σ’ be this new set of constraints. Then, the constraint graph for Σ’ is the 

one in Figure 6, with an additional arc from the node labeled with D to the node 

labeled with A.  
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Suppose that we fire just the first two defaults, generating again the set B of 

assertions: 

1. B(a)     (fire default δ1) 

2. p(a,b)     (fire default δ2) 

Then, the execution of Lightweight-Consistency for Σ and B generates the 

following steps: 

3. Label node B with “a”   1, by CGR2 

4. Label node (≥1 p) with “a”  2, by CGR3 

5. Label node (≥1 p¯ ) with “b”  2, by CGR4 

6. Label node C with “a”  3, by CGR5 

7. Label node ¬A with “a”  3, by CGR5 

8. Label node D with “b”  5, by CGR5 

9.  Label node ¬(≥2 p) with “a”  6, by CGR5 

10. Label node A with “b”   8, by CGR5 (using the new arc) 

11. Label node C with “b”  10, by CGR5 

12. Label node ¬B with “b”  10, by CGR5 

13. Label node (≥1 p) with “b”  11, by CGR5 

14.  Label node ¬(≥2 p) with “b”  11, by CGR5 

(No new application of CGR5 is possible and the loop ends) 

15. Return TRUE    by CGR7 

 

Since Lightweight-Consistency returns TRUE, by Theorem 3, Σ’ ∪ B has a 

model. Hence, it is again consistent to fire defaults δ1 and δ2 at the same time, 

even in the presence of the new constraint “D ⊑ A”. 

 However, we note that Σ ’ ∪ B has no finite model, essentially because Σ ’ 

⊨ (≥1 p¯ ) ⊑ (≥1 p). Indeed, note that there is a path from the node labeled with 

(≥1 p¯ ) to the node labeled with (≥1 p) in the constraint graph for Σ’ (which we 

recall is the constraint graph in Figure 6 with an additional arc from the node 

labeled with D to the node labeled with A). o 

The next example provides a second situation that shows that finite and 

unrestricted logical implication differ for lightweight constraints, and yet that the 

Lightweight-Consistency procedure stops, even when the set of constraints has 

no finite model.  

DBD
PUC-Rio - Certificação Digital Nº 1112681/CA



 81 

Example 12:  

(a) Consider the following set of constraints Σ: 

σ1. (≥1 p) ⊑ (≥1 p¯ ) 

σ2. (≥2 p) ⊑ ⊥ 

σ3. (≥1 p¯ ) ⊑ (≥1 p) 

Then, one may show that  

1. (≥1 p) ⊑ (≥1 p¯ ) and (≥2 p) ⊑ ⊥and (≥1 p¯ ) ⊑ (≥1 p) 

 

Indeed, let I be a finite interpretation of p. Recall that (≥1 p)I is the domain 

of pI and (≥1 p¯)I is the range of pI. Assume that I satisfies σ1 and σ2. Then, σ2 

forces pI to be a function. In fact, we have that (where |S| denotes the cardinality 

of a set S, as usual): 

2.   | (≥1 p)I |  ≤  | (≥1 p¯ )I |   since I satisfies σ1 

3 | (≥1 p)I |  ≥  | (≥1 p¯ )I |   since I satisfies σ2 (forcing PI to be a function) 

4. | (≥1 p)I |  =  | (≥1 p¯ )I |  by 2 and 3  

5. (≥1 p)I  ⊆ (≥1 p¯ )I  ⊆ (≥1 p)I   by 4, since I is finite 

Hence, I satisfies (≥1 p¯ ) ⊑ (≥1 p) as desired. 

 

Now, assume that K is such that pK = {(2n, n) / n is a positive integer}. 

Then, K satisfies σ1 and σ2, but not σ3. Hence, we have: 

6. (≥1 p) ⊑ (≥1 p¯ ) and (≥2 p) ⊑ ⊥does not logically (≥1 p¯ ) ⊑ (≥1 p) 

 

(b) Assume that the set of constrains is Σ = {σ1, σ2} and that the set of assertions 

is C = {p(a,b)}. Then, we have: 

7.  p(a,b)     assertion in C  

 

The execution of Lightweight-Consistency for Σ and C generates the 

following steps: 

8. Label node (≥1 p) with “a”  7, by CGR3 

9. Label node (≥1 p¯ ) with “b”  7, by CGR4 

10. Label node (≥1 p¯ ) with “a”  8, by CGR5 

(No new application of CGR5 is possible and the loop ends) 
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11. Return TRUE    by CGR7 

Thus, since Lightweight-Consistency stops and returns TRUE, Σ ∪ C has a 

model (which is not finite, as proved above). o 

 

5.4.3  
Testing Consistency of Lightweight Ontologies in the Context of 
Mashup Default Trees 

Given a mashup default theory T = (V, Σ, Δ), the procedures introduced in Section 

5.3 require testing the consistency of Σ ∪ cons(Θ), where Θ is a subset of the set 

of defaults in Δ (and, we recall, cons(Θ) is the set of consequents of the defaults in 

Θ). Furthermore, the procedures require backtracking to a previous candidate 

solution, if the test fails.  

Backtracking, in this case, can be efficiently implemented by modifying the 

Lightweight-Consistency procedure to incrementally consider a list L1,...,Ln of 

assertions and to backtrack from the processing of assertion Lj to the processing of 

assertion Li, with 1 ≤ i < j ≤ n.  This can be efficiently implemented by 

sequentially tagging with integer k the constants that are propagated when 

processing assertion Lk, with 1 ≤ k ≤ n, and by keeping the labeled graph from one 

call of the Lightweight-Consistency procedure to the next. 

The following example illustrates the proposed change. 

 

Example 13: Consider the same set Σ of constraints as in Example 6:  

σ1. (≥1 p¯ ) ⊑ D 

σ2. C ⊑ (≥1 p) 

σ3. C ⊑ ¬(≥2 p) 

σ4. A ⊑ C 

σ5. B ⊑ C 

σ6. A ⊑ ¬B 

Assume the following set Δ of defaults: 

δ1.  : B(a) / B(a) 

δ2. : p(a,b) / p(a,b) 

δ3. : p(a,c) / p(a,c) 
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Suppose that we fire the defaults, one a time, generating the following list of 

assertions: 

L1. B(a)    (obtained by firing default δ1) 

L2. p(a,b)    (obtained by firing default δ2) 

L3.  p(a,c)    (obtained by firing default δ3) 

 

Consider that we call Lightweight-Consistency for Σ and each of these 

assertions, in sequence. Also assume that we tag with k the constants propagated 

in the kth call: 

First call of Lightweight-Consistency for Σ and L1: 

4. Label node B with “a1”  L1, by CGR1 

5. Label node C with “a1”  4, by CGR4 

6. Label node ¬A with “a1”  4, by CGR4 

7. Label node ¬(≥2 p) with “a1”  5, by CGR4 

(No new application of CGR4 is possible and the loop ends) 

8. Return TRUE    by CGR6 

 

Second call of Lightweight-Consistency for Σ and L2 (reusing the graph left 

from the first call): 

9. Label node (≥1 p) with “a2”  L2, by CGR2 

10. Label node (≥1 p¯ ) with “b2” L2, by CGR3 

11. Label node D with “b2”  10, by CGR4 

(No new application of CGR4 is possible and the loop ends) 

12. Return TRUE    by CGR6 

 

Third call of Lightweight-Consistency for Σ and L3 (reusing the graph left 

from the second call): 

13.  Label node (≥2 p) with “a3”  L2, L3, by CGR2 

14. Label node ¬C with “a3”  13, by CGR4 

15. Return FALSE   5, 14, by CGR5 

Since Lightweight-Consistency returns FALSE, we have to backtrack to the 

state after the second call. But this can be done by just dropping all constants with 

subscript “3” from the graph. o 
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5.5  
Summary    

Recall again from Section 3.8 the following question: 

 

Q4.  How to create a (maximal) consistent subset M of the set of the assertions 

collected from the data sources in such a way that M is consistent with the 

mashup constraints?  

 

In Chapter 4, we discussed how to rephrase this question as the central 

problem of Default Logic, viz., how to compute extensions. In this chapter, we 

extensively discussed how to systematically search for extensions. Section 5.1 

introduced a naïve, brute force method to compute extensions of a default theory 

with a finite set of generic defaults. Section 5.2 summarized a method to obtain 

extensions of (generic) default theories, called process trees, proposed by 

Antoniou (1999). Section 5.3 showed how to adapt process trees to mashup 

default theories. Inspired on such adaptation, we then proposed a new method to 

compute extensions of mashup default theories, called mashup default trees and 

extensively discussed procedures to explore such trees to compute extensions of 

mashup default theories. 

The chapter concluded with a discussion on what we called the Ontology 

Consistency Problem, that is, the problem of testing the consistency of a set of 

assertions in the presence of a set of constraints, a central problem of the 

procedures introduced earlier in the chapter. Section 5.4.1 briefly summarized the 

results for the Ontology Consistency Problem for the OWL 2 profiles. Section 

5.4.2 focused on the Lightweight Ontology Consistency Problem, that is, the 

Ontology Consistency Problem for ontologies, under the Unique Name 

Assumption. We showed that constraint graphs lead to a new consistent and 

complete decision procedure, which is polynomial with respect to the total size of 

the axioms and the assertions. The procedure is also amenable to be incrementally 

used in the context of mashup default trees.  

N
coreLite-DL
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6  
Related Work 

 

6.1  
Consistent Mashups and Related Problems 

In this thesis, we investigated the problem of building consistent data mashups 

from mutually inconsistent data sources.  

Our approach first considers that the data sources are described by 

application ontologies, following a three-level ontology-based architecture. We 

assume that all ontologies are written in an expressive family of attributive 

languages and their sets of constraints are captured as constraint graphs. We 

reported a preliminary investigation on the generation of application ontologies in 

Sacramento et al. (2010), but without addressing the generation of their sets of 

constraints.  

Our approach advocates that the data mashup service should have access to 

the constraints of the domain ontology to compute the constraints of the data 

mashup. Jain al. (2010) also argue that the Linked Open Data (LoD) Cloud, in its 

current form, is only of limited value for furthering the Semantic Web vision. 

They believe that it can be transformed from “merely more data” to “semantically 

linked data” by overcoming problems, such as schema heterogeneity and lack of 

schema level links.  

In a previous work (Sacramento et al., 2012), we provided an ad hoc 

solution for the problem of constructing a consistent data mashup. We formalized 

the notion of data mashups in the context of knowledge bases, and provided a 

greedy algorithm based on an ordering of the data sources and on their 

corresponding assertions, induced by an ordering of the symbols in the alphabet 

(computed from the structure of the constraint graph). This thesis investigates the 

same problem using a new approach based on default theory, and provides an 

algorithm which employs some heuristics to optimize the problem.  

Antoniou (Antoniou, 1999) proposed an operational model, called process 
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trees, which was used to obtain extensions of a given default theory. In our 

approach, we presented a model checker to compute extensions that was an 

adaptation of the process trees, called mashup default trees, which applies to a 

finite set of simple defaults. Furthermore, in our approach, the order of firing a set 

of simple defaults did not matter, as it lead to different ways of traversing a 

mashup default tree, but we continued to obtain the same solutions.  

The problem of building consistent data mashups compares with the 

problems of filtering large schemas, querying inconsistent databases and data 

integration, among others. Below, we separately discuss each one of these 

problems. 

Filtering large schemas. The data mashup service we propose allows 

browsing the domain ontology and choosing one or more concepts to be queried. 

From the concepts chosen, the service automatically queries the proper sources 

and combine the data returned in a way that only consistent data is exhibited to the 

user. So, it is based on the idea of focus+context (Villegas and Olivè, 2010), in 

which the notion of focus would be carried out by a vocabulary selection and the 

notion of context would be provided by the constraints. Note that this problem 

also appears in other information systems development activities, in which people 

need to operate with a fragment of the knowledge contained in the schema. 

Querying inconsistent databases. Hogan (2011) and Lembo (2004) propose 

techniques to both repair databases and compute consistent query answers from 

the repaired database instances. The notion of data mashup we adopted uses a 

simple form of paraconsistent logical implication. De Amo et al. (2002) propose a 

tableau proof system for a paraconsistent logic to treat the integration process. 

However, their approach considers both positive and negative assertions, while 

our method only considers a positive set of assertions, as we work with defaults. 

Zhang et al. (2011) propose a tableau algorithm to implement paraconsistent 

reasoning in quasi-classical OWL. However, both methods are computationally 

hard.  

Data integration. The problem of consistent data mashup is essentially 

equivalent to the problem of consistent data integration. As an example, Motro 

and Anokhin (2006) introduce fusion functions to treat attribute value’s 

inconsistencies. The technique we propose considers other types of 

inconsistencies and could be modified to incorporate generalized fusion functions. 
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Wang et al. (2011) propose a solution that extends a data integration model with a 

data source quality criteria vector. Their strategy selects the “best” data source as 

the solution for the problem of data inconsistency, using a fuzzy multi-attribute 

decision making approach based on data source quality criteria. The model we 

propose, based on defaults, is far more general. It could be extended to consider 

priority defaults, where the priority is based on data quality and not on the 

relevance of the data sources. 

With respect to data integration, the problem of constructing a data mashup 

service also compares with the usual problem of creating a data integration 

service, including a mediator, as follows.  

Schema matching problem. We assume that each application ontology term 

matches the same term of the domain ontology, trivializing the problem of schema 

matching in our approach. Alternatively, the designer may use owl:sameAs 

statements to express that a term of the application ontology matches a term of the 

domain ontology. So, our data mashup service avoids the schema matching 

problem that traditional data integration services have been struggling with for 

some time (Bizer and Schultz, 2010). 

Entity resolution problem. Our data mashup service may replace entity 

resolution by deductions involving owl:sameAs statements; for example, from the 

assertions C(a), P(a,b) and a owl:sameAs c, the service may deduce C(c) and 

P(c,b). By contrast, traditional data integration services typically include a (costly) 

entity resolution process to serve similar purposes. The works described in Jaffri 

et al. (2008) and Glaser et al. (2009) address the problem of identity resolution. 

These papers present some analysis of datasets used to link data and raise the 

question of how to manage the identity and meaning of URIs in the Semantic 

Web, in order to solve this problem.  

Data Consistency problem. Our approach investigates the problem of 

constructing consistent data mashups when data to be combined is inconsistent 

with respect to a predefined set of constraints. It occurs because even if each data 

source returned data that is consistent with its own set of constraints, the 

combined data might be inconsistent. 
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6.2  
Mashup Frameworks 

For building data mashup applications, in many cases, there is a need for fetching 

and assembling pieces of information from multiple data sources. Mountantonakis 

et al. (2014) use the term Semantic Warehouse to refer to this concept. 

Tran et al. (2014) and Hoang et al. (2014) overview the state-of-the-art in 

the area of Linked Data Mashups, describing technologies, applications and open 

challenges. They also compare mashups with traditional data integration tools, as 

mashups are technically similar, although philosophically quite different, and they 

attempt to move the control over data closer to the user and to his point of view.  

Trinh et al. (Trinh et al., 2014) presents an approach for integrating multiple 

LOD datasets by levering their interconnections in a systematic and scalable 

manner, in order to support the flexible exploration of LOD by non-experts users, 

through the modularization of functionalities into blocks. However, in their 

approach, the developer has to manually guarantee that the output of his block 

adheres to the defined model, something that can cause inconsistencies.  

Harth et al. (2013) shows an on-the-fly integration of static and dynamic 

sources for applications that consume Linked Data, which provides interactive 

access to data through integration pipelines that are executed at query time. They 

still need to investigate fault handling, in case of failing sources, and reduce the 

amount of network traffic, while keeping the query results update.  

There are frameworks specifically designed to integrate Linked Data. The 

LOD2 project (Auer et al., 2012) includes the development of the ODCleanStore 

framework (Knap et al., 2012; Michelfeit and Knap, 2012), which offers linked 

data fusion at query time, resolving inconsistencies through pre-defined policies 

and generating provenance data to help users judge data quality and 

trustworthiness. This framework offers a data fusion and conflict resolution tool 

called ODCS-FusionTool (Michelfeit et al., 2014).  

A similarly tool is LDIF - Linked Data Integration Framework (Schultz et 

al., 2011) that implements a mapping language to translate data from several 

sources to a mediated schema. It offers a service to identify when several distinct 

URIs refer to the same real-world object (entity resolution) and allows Linked 

Data quality assessment and data fusion through a tool named Sieve (Mendes et 
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al., 2012). We do not focus on the data fusion problem, but the technique we 

propose might be integrated into LDIF to include consistency checks.  

Michelfeit and Mynarz (2014) present a more sophisticated approach for 

Linked Data fusion than the current available tools. They provide new data fusion 

features to address the problems of dependencies between RDF properties and the 

fusion of structured values. These extensions have been implemented in a tool 

named LD-FusionTool, which was developed as a part of the UnifiedViews 

framework, a successor of ODCleanStore.  

Tzitzikas et al. (2014) describe the requirements, and present a process and a 

tool for constructing semantic warehouses. The authors developed a tool called 

MatWare (Materialized Warehouse) to validate the warehouse construction 

process. They also report their experience, using this tool, building a semantic 

warehouse for the marine domain. 

Mynarz (2014) proposes a generic workflow for data integration, based on 

Linked Data and semantic web technologies, which covers schema alignment, 

data translation, entity reconciliation, and data fusion. He also presents an 

application that integrates public procurement data in order to improve data 

usability and value for analysis of such data.  

Databugger (Kontokostas et al., 2014a) is a framework for test-driven 

quality assessment of Linked Data that ensures a basic level of quality by 

accompanying vocabularies, ontologies, and knowledge bases with a number of 

test cases (Kontokostas et al., 2014b). This methodology is centered on the 

definition of data quality integrity constraints and does not provide a complete 

reasoning and constraint checking, but allows verifying typical violations 

efficiently. As many datasets provide only limited schema information, they can 

perform automatic schema enrichment, suggesting schema axioms with a certain 

confidence value by analyzing the dataset (Kontokostas et al., 2014c). Our 

approach presupposes that the constraints of the data mashup are generated from 

the domain ontology constraints. From the obtained constraints, it allows checking 

the initial set of assertions coming from the data sources, obtaining new derived 

assertions, and finally analyzing and separating consistent assertions from 

inconsistent ones. 
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6.3  
Working with Defaults  

With respect to using defaults with a terminological knowledge representation 

formalism, Baader and Hollunder (1995) show that an extension of a decidable 

description logic becomes undecidable, if it is extended with (open) defaults, due 

to the unsatisfactory treatment of open defaults via Skolemization in Reiter's 

Semantics (Reiter, 1980). However, if the default only refers to known or named 

individuals, then decidability can be retained. So, under this restricted semantics, 

it is possible to compute all extensions of a finite terminological default theory. 

Shaohua et al. (2008) present a framework for semantic query based on a 

prioritized default extension to description logic. They provide a mathematical 

foundation for querying information from incomplete description logic knowledge 

base by introducing prioritized default rules, in order to avoid conflict between 

them. Their approach gives preference to more specific defaults over more general 

rules, and considers both normal and not normal default rules. Our approach is 

neutral in this aspect, and the user may explicitly define the order of relevance of 

the data sources and it only works with normal (simple) defaults.  

Sengupta et al. (2013) present an approach for integrating defaults with 

description logics that retain decidability, although working with free defaults. 

However, they imposed that exceptions to the default only occur in the named 

individuals of the knowledge base. Furthermore, their approach is skeptical as it 

requires a logical formula to be true in all the extensions of the default theory; 

while our approach is credulous, as it requires a set of assertion to be consistent in 

some extensions.  

Finally, this thesis uses simple and closed defaults, as reasoning in this 

setting is decidable in general, when the underlying DL is also decidable. 

Furthermore, our defaults are grounded, as the extensions may only contain 

known individuals (or pairs of such, for roles). So, the problems faced by the 

extension of DL proposed by Baader and Hollunder (1995) are not applicable to 

our work. 
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7  
Conclusions and Suggestions for Future Research 

7.1  
Conclusions 

In this thesis, we focused on a new solution for the problem of building consistent 

data mashups from data sources that are mutually inconsistent with respect to a 

predefined set of constraints.   

Remember that we raised the following questions in Chapter 3: 

 

Q1. How to compute the mashup constraints from the domain ontology 

constraints? 

Q2. How to match the data source vocabularies with the vocabulary of the 

domain ontology? 

Q3. How to derive new assertions from those obtained from the data sources 

(after translation) and the mashup constraints?  

Q4. How to create a (maximal) consistent subset M of the set of the assertions 

collected from the data sources in such a way that M is consistent with the 

mashup constraints?  

 

Questions Q1 and Q2 were already discussed in previous work of the 

authors:  

Question Q1 was presented in Casanova et al. (2011) and Sacramento et al. 

(2012) and Question Q2 was discussed in Sacramento et al. (2010). The matching 

step is in fact a trivial process, as we assumed that the vocabularies of the data 

sources are subsets of the vocabulary of the domain ontology.  

We presented answers to Questions Q3 and Q4 in Chapters 4 and 5 of this 

thesis: 

With respect to Question Q3, we showed in Chapter 4 how to translate an 

ontology and a set of assertions to a default theory. According to our definitions, a 

set of assertions retrieved from the data sources will be considered together iff the 
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corresponding simple defaults can be fired in the presence of the constraints. 

Furthermore, one should consider only maximal sets of such defaults to maximize 

the data retrieved from the data sources and shown to the user, without running 

into inconsistencies. We discussed, at the end of Chapter 4, how to rephrase the 

Question Q4 based on the use of Default Theories. 

In Chapter 5, we introduced a brute force method to compute extensions of 

a default theory with a finite set of generic defaults. Next, we summarized a 

method to obtain extensions of (generic) default theories, called process trees 

(Antoniou,1999). We also showed how to adapt process trees to mashup default 

theories.  

In this chapter, we also proposed a method to compute extensions of 

mashup default theories, called mashup default trees. Then, we provided a 

heuristic procedure to compute such mashup default trees. We showed that 

changing the order of firing the same set of (simple) defaults lead to a different 

traversing of a mashup default tree, that is, to a different labeling of its nodes, but 

the obtained solutions were the same. Finally, we discussed the problem of testing 

the consistency of a set of assertions in the presence of a set of constraints, called 

the Ontology Consistency Problem. In particular, we focused on this problem for 

ontologies, under the Unique Name Assumption, and showed that 

there is a consistent and complete decision procedure, and that the procedure is 

polynomial with respect to the total size of the axioms and the assertions. 

The notion of consistent data mashup adopted uses a simple form of 

paraconsistent logical implication, as the incoming data was not removed, but 

tested and marked as “consistent” or “inconsistent”, before being combined. 

We restricted our attention to simple defaults, as they were sufficient for 

formalizing the concept of a consistent data mashup. We observed that reasoning 

in this setting is decidable in general, when the underlying Default Logic is also 

decidable (Baader and Hollunder, 1995). We also verified that the simple default 

theory adopted always has extensions, i.e., although it is limited in expressiveness, 

it generates at least one extension, satisfying the semi-monotonicity property, as 

the normal default theories do (Antoniou, 1999). 

Finally, we borrowed from Casanova et al. (2011) the technique to derive 

the constraints that must hold for a data mashup specification. The heuristic 

N
coreLite-DL
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procedure to compute consistent data mashups (extensions) is entirely novel, as it 

investigates the problem using a new approach based on default theory. 

 

7.2  
Suggestions for Future Research 

As for future research, we suggest: 

• The expansion of our results to consider equalities and inequalities 

assertions, which do not require the UNA (Unique Name Assumption) 

anymore; 

• The expansion of our work to a more expressive class of ontologies, 

which include role hierarchies, using the results in Casanova et al. 

(2012); 

• The treatment of the ontologies directly as default theories. In this case, 

mashups constraints would be considered as generic defaults;  

• The use of the proposed heuristics for optimizing the procedure of 

computing consistent data mashups; 

• The evaluation of the increased effectiveness of the procedure of 

computing consistent data mashups after applying the suggested 

heuristics; 

• The presentation of the obtained extensions to the final user; 

• The implementation of a prototype data mashup service that includes 

our approach based on simple defaults. 
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